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Financial Background

I A financial company may need to immediately quote the price
of a derivative upon enquiry, and know the Greeks for hedging
(once the transaction is made).

Financial 
Company

Want to buy a derivative

Client

Price Greeks ‐ Partial derivatives of price
‐ Risk exposureHedging

I Fair price and Greeks change rapidly as the market conditions
change ⇒ Real-time problem.

I For simple model, analytical formulae of the derivative price
and Greeks are available (no difficulty in real-time use).

I For realistic model, Monte Carlo simulation is often required to
estimate price and Greeks (cannot output results in real time).
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Financial Background

I Important Facts:

1. Financial markets only open during the working hours.
2. Market conditions tomorrow normally vary within some ranges

from the closing conditions today.

I How to take advantages of such facts?
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Offline Simulation Online Application

I Offline Simulation: When market closes, run simulation to
learn the surfaces of price and Greeks (over certain ranges of
market parameters).

I Online Application: When market opens tomorrow, use the
learned surfaces to quote real-time price and hedge risk.
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Key Research Question

I How to construct surfaces of price and Greeks during offline
simulation period?

1. So that they can be used in a way like analytical formulae.
2. So that they are accurate enough.
3. So that the used price and Greeks are consistent.

I Consistency is defined as:

Ĝ k(x) =
∂V̂ (x)

∂xk
,

with the following notations:

I x := (x1, x2, . . .)
ᵀ denotes the market parameters (factors);

I V (x) denotes the price of a derivative (or a portfolio);
I G k(x) := ∂V (x)/∂xk denotes the Greeks;
I V̂ (x) denotes the estimator of the price;
I Ĝ k(x) denotes the estimator of Greeks.
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Why Consistency Matters?

I Consistency between used price and Greeks is critical to
I ensure effective hedging (P&L close to zero);
I maintain stable balance sheet in accounting.

I Our Theorem 1 shows that the fluctuation (variance) of the
company’s P&L will be smaller when consistency exits.

I Our Theorem 2 shows that to achieve the same hedging
effect, the hedging cost in consistency case will be less than
that in inconsistency case.
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Stochastic Kriging

I Kriging, named after the South African mining engineer Danie
G. Krige, is a method of interpolation.

I Originally used to interpolate the altitude of a landscape.

I Observing (x1, y(x1)), (x2, y(x2)), . . ., we wish to predict
y(x0) for any x0.

x
1

x
2

y(
x)

I Stochastic Kriging (SK) allows observation errors in y .
I It is no longer exact interpolation.
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Stochastic Kriging

I Surfaces constructed from SK possess analytical forms (linear
combination of observed y(xi )).√

Requirement 1: Used in a way like analytical formulae.

I Naturally, one may consider the following approaches.

I Approach A: Construct surfaces for price and Greeks using
SK, separately.√

Requirement 2: Accuracy.
× Requirement 3: Consistency.

I Approach B: Construct price surface using SK, and get Greeks
by differentiating the price surface.

× Requirement 2: Accuracy.√
Requirement 3: Consistency.
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Gradient Enhanced Stochastic Kriging

I Gradient Enhanced Stochastic Kriging (GESK), also known as
co-kriging, combines the observations of price and Greeks
together to construct the price surface.
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Gradient Enhanced Stochastic Kriging

I Recall that
I Approach A: Construct surfaces for price and Greeks using SK,

separately.
√

Requirement 2: Accuracy.
× Requirement 3: Consistency.

I Approach B: Construct price surface using SK, and get Greeks
by differentiating the price surface.

× Requirement 2: Accuracy.√
Requirement 3: Consistency.

I Approach C: Construct price surface using GESK, and get
Greeks by differentiating the price surface.

?? Requirement 2: Accuracy.√
Requirement 3: Consistency.

I Our Theorem 4 shows that, the accuracy of price and
Greeks in Approach C are higher than that in Approach A.
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Black-Scholes Model

I Consider a European call option (maturity T = 1 year, strike
price K = 105).

I The underlying stock price is driven by a geometric Brownian
motion.

I Option price formula is given by B-S formula, and Greeks
formulae can be obtained by differentiating the price formula.

I Pretend that the formulae are unknown and compare
Approaches A, B, C under OSOA.

I Closing market parameters: stock price St = 100, volatility
σ = 0.2, interest rate r = 0.02.

I Sample 20 design points

xi = (St , σ, r) ∈ [80, 120]× [0.01, 0.3]× [0.001, 0.1]

using Latin hypercube sampling method.
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Surface Accuracy
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Figure: Price (left) and delta (right) surfaces for St ∈ [80, 120].
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Surface Accuracy
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Figure: Price (left) and vega (right) surfaces for σ ∈ [0.01, 0.3].
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Surface Accuracy
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Figure: Price (left) and rho (right) surfaces for r ∈ [0.001, 0.1].



14/18

Delta Hedging Effect
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Variance Gamma Model

I Consider a portfolio with 5 Asian options and 5 lookback
options, based on 5 stocks.

I (1) Apple, (2) Facebook, (3) Netflix, (4) Alibaba, (5) Tesla.
I The stock price is modeled by the exponential variance gamma

process.
I Analytical formulae of price and Greeks are unavailable.

I Based on the data from Yahoo Finance on 9th November
2018, we set the closing stock price S and yield, and calibrate
parameters (σ, ν, θ).

where XV G
ti is a VG process with parameters (σi, νi, θi), and φi = −1/νi log(1 − θiνi − σ2i νi/2)

is a compensation such that E
[
SV Gti

]
= S0i exp(rt), i = 1, 2, . . . , 5. We consider the partial-time

arithmetic average Asian call option and the partial-time fixed strike lookback call option. For both

Asian option and lookback option, let the maturity be T = 1 year, and the partial time be from

0.75 to 1 (i.e., the last three months), during which the stock price is observed once per week.

Based on the data from Yahoo Finance on 9th November 2018, we observe, for each stock, the

closed price S and yield, as listed in Table 2. Moreover, the parameters (σ, ν, θ) for each stock

are calibrated by the corresponding European options’ trading prices in Chicago Board Options

Exchange (see more details in Appendix E), and the calibration results are also listed in Table 2.

For each stock, let the strike prices of its corresponding Asian option and lookback option be the

same. Specifically, the strike prices of options based on the 5 stocks are (204, 140, 290, 150, 360).

The risk-free interest rate is 2.73% (one year US treasury yield from the data).

We first consider the price and Greek surfaces of the portfolio at the initial time. For the options

based on stock i = 1, . . . , 5, we consider their price surfaces at the initial time over (S0i, σi, θi). Then

the price surface of the portfolio at the initial time is the summation of all options’ price surfaces.

We also consider the following Greek surfaces of the portfolio: ∂Φ/∂S0i (delta), ∂Φ/∂σi, ∂Φ/∂θi,

for i = 1, . . . , 5. To compare the performance of surface construction by GESK and separate SK,

for each stock, we randomly sample 15 points in the ranges of ±30% of the current parameter

values, and run Monte Carlo simulation to get the estimates of prices and corresponding Greeks for

the associated options. To estimate the option price, we use the time-changed Brownian motion

method (Schoutens 2003) to generate sample path of Sti (see more details in Appendix A). The

Greeks can be estimated via IPA in a way similar to that shown in Appendix A. Given all the

estimates on the design points, we then construct the price and Greek surfaces for each option using

GESK and separate SK, respectively, which finally give the constructed price and Greek surfaces

of the portfolio. To evaluate the accuracy, 100 testing points are sampled for each stock in the

Table 2: Underlying stocks’ closed prices, dividends and calibrated parameters.

Apple, Inc. Facebook, Inc. Netflix, Inc. Alibaba Tesla, Inc.

S 204.47 144.96 303.47 144.85 350.51
yield 1.21% 0 0 0 0
σ 0.2636 0.2625 0.4012 0.2842 0.4660
ν 0.0387 0.0355 0.0394 0.0017 0.0933
θ -0.5185 -0.8288 -1.2344 -2.6984 -1.1459
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Delta Hedging Effect
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Figure: P&L under one specific stock path (left) and standard deviation
over 50 stock paths (right).
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Conclusion

I Under the perspective of offline simulation online application,
simulation can be used to solve real-time problem, e.g.,
real-time pricing and hedging.

I For the pricing and hedging problem, consistency between
price and Greeks matters.

I Price and Greeks surfaces constructed using GESK are
consistent and accurate, which yield satisfactory hedging
effect.
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Thank You!

SHEN Haihui
shenhaihui@sjtu.edu.cn
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Hedging Effect

I Use delta hedging as an example.

I Assume there is only one underlying asset and only the asset
price St is changing (other market factors in x keep
unchanged).

I Profit & Loss of the hedged derivative (portfolio).
I Consistency:

L(St) = −[V (St)− V (s0)] + ∆(s0)[St − s0], ∆(s0) = V ′(s0)

I Inconsistency:

L†(St) = −[V (St)−V (s0)] + ∆†(s0)[St − s0], ∆†(s0) 6= V ′(s0)
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Hedging Effect

Theorem (1)

Suppose that the underlying asset St is driven by the exponential
family of stochastic process St = s0 exp(at +

√
tXt), where

Xt
d−→ X as t → 0+ with E

[
X 4
]
<∞ and Var[X ] > 0. Moreover,

assume that there exist h > 0 and th > 0 such that
sup0<t≤th E

[
eθXt

]
<∞ for all |θ| ≤ h, and the second derivative

of V (s) is bounded above. Then for the P&L L(St) and L†(St)
defined above, there exists τ > 0 such that
Var[L(St)] < Var[L†(St)] for t < τ .

Remark
If one is willing to assumes that V (s0) is approximately linear over
a small range around s0 (i.e., perfect hedging), then the result of
Theorem 1 can be obtained without assuming any form of St .
Indeed, in this case, L(St) ≈ 0 while L†(St) 6= 0 for small t.
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Hedging Cost

I One may consider the problem the other way around, that is,
to achieve the same hedging effect, what is the difference in
efforts when consistency does and does not exist?

I Hedging cost:

I Consistency: C =
∣∣∣∆(s0)− ∆̃

∣∣∣ s0d

I Inconsistency: C † =
∣∣∆†(s0)− ∆̃

∣∣s0d +
∑m

i=1

∣∣∆†i −∆†i−1

∣∣Stid .

Theorem (2)

Suppose in inconsistency case the risk manager needs to conduct a
series of hedging at time t1, . . . , tm with 0 < t1 < · · · < tm < t,
which successively adjusts the position to ∆†1, . . . ,∆

†
m such that

∆†m = ∆(s0), for some m ≥ 1, in order to achieve the the same
hedging effect in the consistency case. Moreover, assume that
E[Sti ] = s0, for i = 1, . . . ,m. Then for the hedging cost C defined
and C † defined above, C ≤ E[C †].
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Stochastic Kriging
I Let x ∈ <d be the market factors scenarios, and Y(x) be the

derivative price.

Y(x) = f(x)>β + M(x),

where M(x) is a Gaussian random field with zero mean.
I Y(x) is observed with random noise,

Yl(x) = Y(x) + εl(x) = f(x)>β + M(x) + εl(x),

where εl(x) is the simulation error along the l-th sample path.
I Suppose that we have n design points xi , i = 1, . . . , n, and on

design point xi the simulation is run for mi replications:

Y (xi ) =
1

mi

mi∑

l=1

Yl(xi ), and ε(xi ) =
1

mi

mi∑

l=1

εl(xi ).

I The mean squared error (MSE) optimal predictor of Y(z) is
given by

Ŷ(z) = f(z)>β + γ(z)>(Γ + Σ)−1(Y − Fβ).
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Gradient Enhanced Stochastic Kriging

I Incorporates the response surface’s gradient estimators into
SK to improve the prediction accuracy of the response surface

Dk(x) =
∂

∂xk
Y(x) =

(
∂

∂xk
f(x)

)>
β +

∂

∂xk
M(x).

I The GESK models Dk
l (x), k = 1, . . . , d , as

Dk
l (x) = Dk(x) + εkl (x) =

(
∂

∂xk
f(x)

)>
β +

∂

∂xk
M(x) + εkl (x).

I Y(z) is predicted by

Ỹ(z) = f(z)>β + γ+(z)>(Γ+ + Σ+)−1(Y+ − F+β).

I Dk(z) is predicted by

∂k Ỹ(z) = (∂k f(z))>β+ (∂kγ+(z))>(Γ+ + Σ+)−1(Y+−F+β).
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Accuracy Analysis

Theorem (4)

Suppose that β, τ2, θ and Σ+ are known, then the MSE of Ỹ(z)
is smaller than the MSE of Ŷ(z), i.e.,

E

[(
Ỹ(z)− Y(z)

)2
]
< E

[(
Ŷ(z)− Y(z)

)2
]
,

and the MSE of ∂
∂zk
Ỹ(z) is smaller than the MSE of D̂k(z), i.e.,

E

[(
∂

∂zk
Ỹ(z)−Dk(z)

)2
]
< E

[(
D̂k(z)−Dk(z)

)2
]
,

for k = 1, . . . , d .

Proposition (1)
∂
∂zk
Ỹ(z) = D̃k(z), for all z and k = 1, . . . , d .
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Surface Accuracy for B-S Model
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Figure: Boxplots of RMSE for price, delta, vega, rho, and theta

surfaces.
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Surface Accuracy for Variance Gamma Model
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Figure 8: Boxplots of RMSE for ∂Φ/∂S0i (delta), ∂Φ/∂σi, ∂Φ/∂θi, i = 1, . . . , 5.
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