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Financial Background

» A financial company may need to immediately quote the price
of a derivative upon enquiry, and know the Greeks for hedging
(once the transaction is made).
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» A financial company may need to immediately quote the price
of a derivative upon enquiry, and know the Greeks for hedging
(once the transaction is made).
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» Fair price and Greeks change rapidly as the market conditions
change = Real-time problem.
» For simple model, analytical formulae of the derivative price
and Greeks are available (no difficulty in real-time use).
» For realistic model, Monte Carlo simulation is often required to
estimate price and Greeks (cannot output results in real time).
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Financial Background

» Important Facts:

1. Financial markets only open during the working hours.
2. Market conditions tomorrow normally vary within some ranges
from the closing conditions today.

» How to take advantages of such facts?
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Offline Simulation Online Application

» Offline Simulation: When market closes, run simulation to
learn the surfaces of price and Greeks (over certain ranges of
market parameters).

» Online Application: When market opens tomorrow, use the
learned surfaces to quote real-time price and hedge risk.

Tonight: Offline Simulation Tomorrow: Online Application
e mmmm—— e, —— - e ————————
. " 1 1 :
Today's Closing ~ Tomorrow's Possible Real-Time
1 1
Market Parameters ~ Market Parameters Price Greeks 1 1 Market Parameters
. 1 1
simulation

° eoo [
1 1
1 1

1

N\

4 Lo [eee \L/"f\/—.

1 1
1 1
1 1
1 1
> @ eoo 1 1
1 1
1 1
1 1
1 1

Surface Surfaces
of Price of Greeks

5/18



Key Research Question

» How to construct surfaces of price and Greeks during offline
simulation period?

1. So that they can be used in a way like analytical formulae.
2. So that they are accurate enough.
3. So that the used price and Greeks are consistent.
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Key Research Question

» How to construct surfaces of price and Greeks during offline
simulation period?

1. So that they can be used in a way like analytical formulae.
2. So that they are accurate enough.
3. So that the used price and Greeks are consistent.

» Consistency is defined as:

AV(x)
8Xk

GK(x) =

with the following notations:

x := (x1, X2, ...)T denotes the market parameters (factors);
V(x) denotes the price of a derivative (or a portfolio);
G*(x) := OV(x)/Oxk denotes the Greeks;

V(x) denotes the estimator of the price;

G*(x) denotes the estimator of Greeks.

vV V. v vY
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Why Consistency Matters?

» Consistency between used price and Greeks is critical to

» ensure effective hedging (P&L close to zero);
» maintain stable balance sheet in accounting.
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Why Consistency Matters?

» Consistency between used price and Greeks is critical to

» ensure effective hedging (P&L close to zero);
» maintain stable balance sheet in accounting.

» Our Theorem 1 shows that the fluctuation (variance) of the
company’s P&L will be smaller when consistency exits.

» Our Theorem 2 shows that to achieve the same hedging
effect, the hedging cost in consistency case will be less than
that in inconsistency case.
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Stochastic Kriging

» Kriging, named after the South African mining engineer Danie
G. Krige, is a method of interpolation.

» Originally used to interpolate the altitude of a landscape.
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Stochastic Kriging

> Kriging, named after the South African mining engineer Danie
G. Krige, is a method of interpolation.

» Originally used to interpolate the altitude of a landscape.

» Observing (x1,y(x1)), (2, ¥(x2)), ..., we wish to predict
y(xo) for any xo.

y(x)

X,

Xy

» Stochastic Kriging (SK) allows observation errors in y.
> It is no longer exact interpolation.
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Stochastic Kriging

» Surfaces constructed from SK possess analytical forms (linear
combination of observed y(x;)).

Requirement 1: Used in a way like analytical formulae.
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Stochastic Kriging

» Surfaces constructed from SK possess analytical forms (linear
combination of observed y(x;)).
Requirement 1: Used in a way like analytical formulae.
» Naturally, one may consider the following approaches.
» Approach A: Construct surfaces for price and Greeks using
SK, separately.
Requirement 2: Accuracy.
%X Requirement 3: Consistency.
» Approach B: Construct price surface using SK, and get Greeks

by differentiating the price surface.

X Requirement 2: Accuracy.
Requirement 3: Consistency.
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Gradient Enhanced Stochastic Kriging

» Gradient Enhanced Stochastic Kriging (GESK), also known as
co-kriging, combines the observations of price and Greeks
together to construct the price surface.
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Gradient Enhanced Stochastic Kriging

» Gradient Enhanced Stochastic Kriging (GESK), also known as
co-kriging, combines the observations of price and Greeks
together to construct the price surface.

T T
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gl D=~ - Constructed Surface by GESK
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Gradient Enhanced Stochastic Kriging

» Recall that

» Approach A: Construct surfaces for price and Greeks using SK,
separately.

Requirement 2: Accuracy.
% Requirement 3: Consistency.
» Approach B: Construct price surface using SK, and get Greeks
by differentiating the price surface.

% Requirement 2: Accuracy.
Requirement 3: Consistency.
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Gradient Enhanced Stochastic Kriging

» Recall that

» Approach A: Construct surfaces for price and Greeks using SK,

separately.
Requirement 2: Accuracy.
% Requirement 3: Consistency.
» Approach B: Construct price surface using SK, and get Greeks
by differentiating the price surface.

% Requirement 2: Accuracy.
Requirement 3: Consistency.

» Approach C: Construct price surface using GESK, and get
Greeks by differentiating the price surface.

Requirement 2: Accuracy.
Requirement 3: Consistency.

» Qur Theorem 4 shows that, the accuracy of price and
Greeks in Approach C are higher than that in Approach A.
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Black-Scholes Model

» Consider a European call option (maturity T = 1 year, strike
price K = 105).
» The underlying stock price is driven by a geometric Brownian
motion.
» Option price formula is given by B-S formula, and Greeks
formulae can be obtained by differentiating the price formula.
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Black-Scholes Model

» Consider a European call option (maturity T = 1 year, strike
price K = 105).
» The underlying stock price is driven by a geometric Brownian
motion.
» Option price formula is given by B-S formula, and Greeks
formulae can be obtained by differentiating the price formula.

» Pretend that the formulae are unknown and compare
Approaches A, B, C under OSOA.

» Closing market parameters: stock price S; = 100, volatility
o = 0.2, interest rate r = 0.02.

» Sample 20 design points
x; = (S¢,0,r) € [80,120] x [0.01,0.3] x [0.001,0.1]

using Latin hypercube sampling method.
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Surface Accuracy
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Figure: Price (left) and delta (right) surfaces for S; € [80,120].
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Surface Accuracy
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Surface Accuracy
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Delta Hedging Effect
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Variance Gamma Model

» Consider a portfolio with 5 Asian options and 5 lookback
options, based on 5 stocks.
» (1) Apple, (2) Facebook, (3) Netflix, (4) Alibaba, (5) Tesla.
» The stock price is modeled by the exponential variance gamma
process.
» Analytical formulae of price and Greeks are unavailable.
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Variance Gamma Model

» Consider a portfolio with 5 Asian options and 5 lookback
options, based on 5 stocks.
» (1) Apple, (2) Facebook, (3) Netflix, (4) Alibaba, (5) Tesla.
» The stock price is modeled by the exponential variance gamma
process.
» Analytical formulae of price and Greeks are unavailable.

» Based on the data from Yahoo Finance on 9th November
2018, we set the closing stock price S and yield, and calibrate
parameters (o, v, 0).

‘ Apple, Inc. ‘ Facebook, Inc. ‘ Netflix, Inc. ‘ Alibaba ‘ Tesla, Inc.

S 204.47 144.96 303.47 144.85 350.51
yield 1.21% 0 0 0 0

o 0.2636 0.2625 0.4012 0.2842 0.4660

v 0.0387 0.0355 0.0394 0.0017 0.0933

0 -0.5185 -0.8288 -1.2344 -2.6984 -1.1459
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Delta Hedging Effect
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Figure: P&L under one specific stock path (left) and standard deviation
over 50 stock paths (right).
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Conclusion

» Under the perspective of offline simulation online application,
simulation can be used to solve real-time problem, e.g.,
real-time pricing and hedging.

» For the pricing and hedging problem, consistency between
price and Greeks matters.

» Price and Greeks surfaces constructed using GESK are
consistent and accurate, which yield satisfactory hedging
effect.
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Thank You!

SHEN Haihui
shenhaihui@sjtu.edu.cn
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Hedging Effect

> Use delta hedging as an example.

» Assume there is only one underlying asset and only the asset
price S; is changing (other market factors in x keep
unchanged).

» Profit & Loss of the hedged derivative (portfolio).
» Consistency:

L(Se) = —[V(St) = V(s0)] + A(s0)[Se = s0], A(s0) = V'(s0)
> Inconsistency:

LY(St) = —[V(St) = V(so)l + Af(s0)[Se — 5ol AT (s0) # V' (s0)
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Hedging Effect

Theorem (1)

Suppose that the underlying asset S; is driven by the exponential
family of stochastic process S; = sy exp(at + \/tX;), where

X, % X as t — 0+ with E [X*] < o0 and Var[X] > 0. Moreover,
assume that there exist h > 0 and t;, > 0 such that

SUPg<¢<t, I [eexf] < oo for all |§| < h, and the second derivative
of V(s) is bounded above. Then for the P&L L(S;) and LT(S;)
defined above, there exists T > 0 such that

Var[L(S;)] < Var[L!(S;)] for t < 7.

Remark

If one is willing to assumes that V/(so) is approximately linear over
a small range around sy (i.e., perfect hedging), then the result of
Theorem 1 can be obtained without assuming any form of S;.
Indeed, in this case, L(S;) =~ 0 while LT(S;) # 0 for small t.
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Hedging Cost

» One may consider the problem the other way around, that is,
to achieve the same hedging effect, what is the difference in
efforts when consistency does and does not exist?

» Hedging cost:

» Consistency: C = ’A(so) - E‘ sod
> Inconsistency: Ct = |AT(sp) — Alsod + 37, |Af — Al[S,d.

Theorem (2)

Suppose in inconsistency case the risk manager needs to conduct a
series of hedging at time t1,...,tm With0 < t; < --- < t, < t,
which successively adjusts the position to AI, ceey AL such that
A;rn = A(sp), for some m > 1, in order to achieve the the same
hedging effect in the consistency case. Moreover, assume that
E[St] = so, for i =1,...,m. Then for the hedging cost C defined
and C' defined above, C < E[CT].
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Stochastic Kriging
» Let x € R be the market factors scenarios, and )(x) be the
derivative price.
Y(x) =f(x)" B+ M(x),
where M(x) is a Gaussian random field with zero mean.
» Y(x) is observed with random noise,

Yi(x) = Y(x) +e1(x) = (%) B+ M(x) +e/(x),

where ¢/(x) is the simulation error along the /-th sample path.
» Suppose that we have n design points x;, i = 1,...,n, and on
design point x; the simulation is run for m; replications:

= mi Z Yi(xi), and E(x;) = ZE’
e mi

» The mean squared error (MSE) optimal predictor of Y(z) is
given by

V(@) =)' B+~(2)"(T+x) (Y -FB).
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Gradient Enhanced Stochastic Kriging

> Incorporates the response surface’s gradient estimators into
SK to improve the prediction accuracy of the response surface

-
DK(x) = aiky(x) = (8f(x)) B+ aikl\/l(x).

an
» The GESK models Dff(x),k =1,...,d, as

0

Oxk

.
() B+ 50 M0 + (s

D) = D(0) + ek(x) =
» Y(z) is predicted by
I(2) = F(2) B+ 7, (2) (T4 + E4) (Vs — F1 8).
» DK(z) is predicted by

AV (2) = (9f(2)) B+ (97, (2)) (T4 +T2) (Y1 —F.0).
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Accuracy Analysis

Theorem (4)

Suppose that 3, 72, 8 and ¥, are known, then the MSE of37(z)
is smaller than the MSE of Y(z), i.e.,

E [(37(2)—37(2))1 <E [( (2) - Y(2) ]

and the MSE of %37(2) is smaller than the MSE of D¥(z), i.e.,

(230 -7)

fork=1,...,d.

E

<E [(f)k(z) - Dk(z))z] :

Prop05|t|on (1)
y( ) =DK(z), forallzand k=1,...,d.
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Surface Accuracy for B-S Model

2.6 + + + 55 + +
22 .
035 T
24 T 50 | 55
20 I _
220 4 03 . ! 45| 50 !
2 T 1 ﬁ T |
@ I © 40 ©
o ! = 2 I 2 ©45
218 o025 - 16 | E =
= 2 < H i ls =
E_OJ”S + ﬁ ﬁ” ! waol ] EEO ¢ +
D14l 1L o 02 T 2 2 | ]
Z z Loz Tost L MR -
1.2 - I 1
0.15 10 - -
1 L ‘ 20 El 3
] ‘ =
0.8 El 0.1 T | 15 | 25
06 4 € 6 4 10 4 4

SK GESK SK GESK SK GESK SK GESK SK GESK

Figure: Boxplots of RMSE for price, delta, vega, rho, and theta
surfaces.

18/18



X X
e m HIH m LT H
{IH % s ¥ I+
s 333335 ° g8¢88 g2 §ggoe oo v
50/d0 10 35N £0p160 10} 3SWY Shera0 10} ISNY
(]
o e fE HO (g
S 8 g S ——
= e 8 it ¥ HI---
qmammmwmogwxmmmsommmummm
£ 0100 10} 35N Pogj2¢ 10} 3SWY Y 40160 10) 35NN
3 -+ g e e T Tn
X
nn--w H-+ % | ¥ I
c 0 < @ o - - W O v O v O 1 o
S 8 5 3 8 3 88 4% 8% 29 6w v @ W =
= £50/60 10 35N £0016 10, 35N E4e1a0 10} ISNY
©
> % %
UBF QiR i S
| -
(e
(et HH+ w ] ¥ T
o8 528 ¢ 5 ° sgREagec g A&
® “0/00 10 35N “op10 10} ISNY [A—
>
() HTH g T &
b u L v
X
Ae H - % b % g
(@) ) < © N - © W QO v o 1w O ! o
(=} (<] (=] (=] (=] o (o] o o - — © [} < o o —
© 050190 10, 35NH Fop00 10y 3N Fiera 1oy ISy
-
>

GESK 18/18

SK

GESK

SK

GESK

SK

GESK

SK

GESK

SK



	Introduction
	Financial Background
	Offline Simulation Online Application
	Key Research Question
	Why Consistency Matters?

	Constructing Consistent Surfaces of Price and Greeks
	Stochastic Kriging
	Gradient Enhanced Stochastic Kriging

	Numerical Experiments
	Black-Scholes Model
	Variance Gamma Model

	Conculsion
	Supplement

