Building Closed-Form Formula for Real-Time Derivative Pricing and Greeks Calculation Using Offline Simulation

SHEN Haihui (沈海辉)

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Joint work with Guangxin Jiang (SHU), and Jeff Hong (Fudan)

@ FERM2019, SUFE

August 30, 2019

Outline

Introduction

Financial Background Offline Simulation Online Application Key Research Question Why Consistency Matters?

Constructing Consistent Surfaces of Price and Greeks Stochastic Kriging

Gradient Enhanced Stochastic Kriging

Numerical Experiments

Black-Scholes Model Variance Gamma Model

Conculsion

 A financial company may need to immediately quote the price of a derivative upon enquiry, and know the Greeks for hedging (once the transaction is made).

 A financial company may need to immediately quote the price of a derivative upon enquiry, and know the Greeks for hedging (once the transaction is made).

- ► Fair price and Greeks change rapidly as the market conditions change ⇒ Real-time problem.
 - For simple model, analytical formulae of the derivative price and Greeks are available (no difficulty in real-time use).
 - For realistic model, Monte Carlo simulation is often required to estimate price and Greeks (cannot output results in real time).

Important Facts:

- 1. Financial markets only open during the working hours.
- 2. Market conditions tomorrow normally vary within some ranges from the closing conditions today.

Important Facts:

- 1. Financial markets only open during the working hours.
- 2. Market conditions tomorrow normally vary within some ranges from the closing conditions today.
- How to take advantages of such facts?

Offline Simulation Online Application

- Offline Simulation: When market closes, run simulation to learn the surfaces of price and Greeks (over certain ranges of market parameters).
- Online Application: When market opens tomorrow, use the learned surfaces to quote real-time price and hedge risk.

Key Research Question

- ► How to construct surfaces of price and Greeks during offline simulation period?
 - 1. So that they can be used in a way like analytical formulae.
 - 2. So that they are accurate enough.
 - 3. So that the used price and Greeks are consistent.

Key Research Question

- ► How to construct surfaces of price and Greeks during offline simulation period?
 - 1. So that they can be used in a way like analytical formulae.
 - 2. So that they are accurate enough.
 - 3. So that the used price and Greeks are consistent.
- Consistency is defined as:

$$\widehat{G}^k(\mathbf{x}) = \frac{\partial \widehat{V}(\mathbf{x})}{\partial x_k},$$

with the following notations:

- $\mathbf{x} := (x_1, x_2, \ldots)^{\mathsf{T}}$ denotes the market parameters (factors);
- V(x) denotes the price of a derivative (or a portfolio);
- $G^k(\mathbf{x}) := \partial V(\mathbf{x}) / \partial x_k$ denotes the Greeks;
- $\widehat{V}(\mathbf{x})$ denotes the estimator of the price;
- $\widehat{G}^k(\mathbf{x})$ denotes the estimator of Greeks.

Why Consistency Matters?

Consistency between used price and Greeks is critical to

- ensure effective hedging (P&L close to zero);
- maintain stable balance sheet in accounting.

Why Consistency Matters?

Consistency between used price and Greeks is critical to

- ensure effective hedging (P&L close to zero);
- maintain stable balance sheet in accounting.

 Our Theorem 1 shows that the fluctuation (variance) of the company's P&L will be smaller when consistency exits.

Why Consistency Matters?

Consistency between used price and Greeks is critical to

- ensure effective hedging (P&L close to zero);
- maintain stable balance sheet in accounting.
- Our Theorem 1 shows that the fluctuation (variance) of the company's P&L will be smaller when consistency exits.
- Our Theorem 2 shows that to achieve the same hedging effect, the hedging cost in consistency case will be less than that in inconsistency case.

- Kriging, named after the South African mining engineer Danie
 G. Krige, is a method of interpolation.
 - Originally used to interpolate the altitude of a landscape.

- Kriging, named after the South African mining engineer Danie
 G. Krige, is a method of interpolation.
 - Originally used to interpolate the altitude of a landscape.
- ► Observing (x₁, y(x₁)), (x₂, y(x₂)),..., we wish to predict y(x₀) for any x₀.

- Kriging, named after the South African mining engineer Danie
 G. Krige, is a method of interpolation.
 - Originally used to interpolate the altitude of a landscape.
- ► Observing (x₁, y(x₁)), (x₂, y(x₂)),..., we wish to predict y(x₀) for any x₀.

- Kriging, named after the South African mining engineer Danie
 G. Krige, is a method of interpolation.
 - Originally used to interpolate the altitude of a landscape.
- ► Observing (x₁, y(x₁)), (x₂, y(x₂)),..., we wish to predict y(x₀) for any x₀.

Stochastic Kriging (SK) allows observation errors in y.

It is no longer exact interpolation.

Surfaces constructed from SK possess analytical forms (linear combination of observed y(x_i)).

 $\sqrt{}$ Requirement 1: Used in a way like analytical formulae.

- Surfaces constructed from SK possess analytical forms (linear combination of observed y(x_i)).
 - $\sqrt{}$ Requirement 1: Used in a way like analytical formulae.
- Naturally, one may consider the following approaches.

 Surfaces constructed from SK possess analytical forms (linear combination of observed y(x_i)).

 $\sqrt{}$ Requirement 1: Used in a way like analytical formulae.

- Naturally, one may consider the following approaches.
- Approach A: Construct surfaces for price and Greeks using SK, *separately*.
 - $\sqrt{}$ Requirement 2: Accuracy.
 - × Requirement 3: Consistency.

 Surfaces constructed from SK possess analytical forms (linear combination of observed y(x_i)).

 $\sqrt{}$ Requirement 1: Used in a way like analytical formulae.

- Naturally, one may consider the following approaches.
- Approach A: Construct surfaces for price and Greeks using SK, *separately*.
 - $\sqrt{}$ Requirement 2: Accuracy.
 - × Requirement 3: Consistency.
- Approach B: Construct price surface using SK, and get Greeks by differentiating the price surface.
 - × Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.

- Recall that
 - Approach A: Construct surfaces for price and Greeks using SK, separately.
 - √ Requirement 2: Accuracy.
 - × Requirement 3: Consistency.
 - Approach B: Construct price surface using SK, and get Greeks by differentiating the price surface.
 - × Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.

- Recall that
 - Approach A: Construct surfaces for price and Greeks using SK, separately.
 - √ Requirement 2: Accuracy.
 - × Requirement 3: Consistency.
 - Approach B: Construct price surface using SK, and get Greeks by differentiating the price surface.
 - × Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.
- Approach C: Construct price surface using GESK, and get Greeks by differentiating the price surface.
 - ?? Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.

- Recall that
 - Approach A: Construct surfaces for price and Greeks using SK, separately.
 - $\sqrt{}$ Requirement 2: Accuracy.
 - × Requirement 3: Consistency.
 - Approach B: Construct price surface using SK, and get Greeks by differentiating the price surface.
 - × Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.
- Approach C: Construct price surface using GESK, and get Greeks by differentiating the price surface.
 - $\sqrt{\sqrt{}}$ Requirement 2: Accuracy.
 - $\sqrt{}$ Requirement 3: Consistency.
- Our Theorem 4 shows that, the accuracy of price and Greeks in Approach C are higher than that in Approach A.

- ► Consider a European call option (maturity T = 1 year, strike price K = 105).
 - The underlying stock price is driven by a geometric Brownian motion.
 - Option price formula is given by B-S formula, and Greeks formulae can be obtained by differentiating the price formula.

- Consider a European call option (maturity T = 1 year, strike price K = 105).
 - The underlying stock price is driven by a geometric Brownian motion.
 - Option price formula is given by B-S formula, and Greeks formulae can be obtained by differentiating the price formula.
- Pretend that the formulae are unknown and compare Approaches A, B, C under OSOA.

- Consider a European call option (maturity T = 1 year, strike price K = 105).
 - The underlying stock price is driven by a geometric Brownian motion.
 - Option price formula is given by B-S formula, and Greeks formulae can be obtained by differentiating the price formula.
- Pretend that the formulae are unknown and compare Approaches A, B, C under OSOA.
- Closing market parameters: stock price $S_t = 100$, volatility $\sigma = 0.2$, interest rate r = 0.02.

- Consider a European call option (maturity T = 1 year, strike price K = 105).
 - The underlying stock price is driven by a geometric Brownian motion.
 - Option price formula is given by B-S formula, and Greeks formulae can be obtained by differentiating the price formula.
- Pretend that the formulae are unknown and compare Approaches A, B, C under OSOA.
- Closing market parameters: stock price $S_t = 100$, volatility $\sigma = 0.2$, interest rate r = 0.02.
- Sample 20 design points

 $\mathbf{x}_i = (S_t, \sigma, r) \in [80, 120] \times [0.01, 0.3] \times [0.001, 0.1]$

using Latin hypercube sampling method.

Surface Accuracy

Figure: Price (left) and delta (right) surfaces for $S_t \in [80, 120]$.

Surface Accuracy

Figure: Price (left) and vega (right) surfaces for $\sigma \in [0.01, 0.3]$.

Surface Accuracy

Figure: Price (left) and rho (right) surfaces for $r \in [0.001, 0.1]$.

Delta Hedging Effect

Figure: P&L under one specific stock path (left) and standard deviation over 100 stock paths (right).

Variance Gamma Model

- Consider a portfolio with 5 Asian options and 5 lookback options, based on 5 stocks.
 - ▶ (1) Apple, (2) Facebook, (3) Netflix, (4) Alibaba, (5) Tesla.
 - The stock price is modeled by the exponential variance gamma process.
 - Analytical formulae of price and Greeks are unavailable.

Variance Gamma Model

- Consider a portfolio with 5 Asian options and 5 lookback options, based on 5 stocks.
 - ▶ (1) Apple, (2) Facebook, (3) Netflix, (4) Alibaba, (5) Tesla.
 - The stock price is modeled by the exponential variance gamma process.
 - Analytical formulae of price and Greeks are unavailable.
- Based on the data from Yahoo Finance on 9th November 2018, we set the closing stock price S and yield, and calibrate parameters (σ, ν, θ).

	Apple, Inc.	Facebook, Inc.	Netflix, Inc.	Alibaba	Tesla, Inc.
S	204.47	144.96	303.47	144.85	350.51
yield	1.21%	0	0	0	0
σ	0.2636	0.2625	0.4012	0.2842	0.4660
ν	0.0387	0.0355	0.0394	0.0017	0.0933
θ	-0.5185	-0.8288	-1.2344	-2.6984	-1.1459

Delta Hedging Effect

Figure: P&L under one specific stock path (left) and standard deviation over 50 stock paths (right).

Conclusion

- Under the perspective of offline simulation online application, simulation can be used to solve real-time problem, e.g., real-time pricing and hedging.
- For the pricing and hedging problem, consistency between price and Greeks matters.
- Price and Greeks surfaces constructed using GESK are consistent and accurate, which yield satisfactory hedging effect.

Thank You!

SHEN Haihui shenhaihui@sjtu.edu.cn

Supplement

Hedging Effect

- Use *delta hedging* as an example.
- Assume there is only one underlying asset and only the asset price S_t is changing (other market factors in x keep unchanged).
- Profit & Loss of the hedged derivative (portfolio).
 - Consistency:

$$L(S_t) = -[V(S_t) - V(s_0)] + \Delta(s_0)[S_t - s_0], \ \Delta(s_0) = V'(s_0)$$

Inconsistency:

$$L^{\dagger}(S_t) = -[V(S_t) - V(s_0)] + \Delta^{\dagger}(s_0)[S_t - s_0], \ \Delta^{\dagger}(s_0) \neq V'(s_0)$$

Hedging Effect

Theorem (1)

Suppose that the underlying asset S_t is driven by the exponential family of stochastic process $S_t = s_0 \exp(at + \sqrt{t}X_t)$, where $X_t \xrightarrow{d} X$ as $t \to 0^+$ with $\mathbb{E} [X^4] < \infty$ and $\operatorname{Var}[X] > 0$. Moreover, assume that there exist h > 0 and $t_h > 0$ such that $\sup_{0 < t \le t_h} \mathbb{E} [e^{\theta X_t}] < \infty$ for all $|\theta| \le h$, and the second derivative of V(s) is bounded above. Then for the P&L $L(S_t)$ and $L^{\dagger}(S_t)$ defined above, there exists $\tau > 0$ such that $\operatorname{Var}[L(S_t)] < \operatorname{Var}[L^{\dagger}(S_t)]$ for $t < \tau$.

Remark

If one is willing to assumes that $V(s_0)$ is approximately linear over a small range around s_0 (i.e., perfect hedging), then the result of Theorem 1 can be obtained without assuming any form of S_t . Indeed, in this case, $L(S_t) \approx 0$ while $L^{\dagger}(S_t) \neq 0$ for small t.

Hedging Cost

- One may consider the problem the other way around, that is, to achieve the same hedging effect, what is the difference in efforts when consistency does and does not exist?
- Hedging cost:
 - Consistency: $C = \left| \Delta(s_0) \widetilde{\Delta} \right| s_0 d$
 - Inconsistency: $C^{\dagger} = \left| \Delta^{\dagger}(s_0) \widetilde{\Delta} \right| s_0 d + \sum_{i=1}^m \left| \Delta_i^{\dagger} \Delta_{i-1}^{\dagger} \right| S_{t_i} d.$

Theorem (2)

Suppose in inconsistency case the risk manager needs to conduct a series of hedging at time t_1, \ldots, t_m with $0 < t_1 < \cdots < t_m < t$, which successively adjusts the position to $\Delta_1^{\dagger}, \ldots, \Delta_m^{\dagger}$ such that $\Delta_m^{\dagger} = \Delta(s_0)$, for some $m \ge 1$, in order to achieve the the same hedging effect in the consistency case. Moreover, assume that $\mathbb{E}[S_{t_i}] = s_0$, for $i = 1, \ldots, m$. Then for the hedging cost C defined and C^{\dagger} defined above, $C \le \mathbb{E}[C^{\dagger}]$.

Let x ∈ ℜ^d be the market factors scenarios, and 𝔅(x) be the derivative price.

$$\mathcal{Y}(\mathbf{x}) = \mathbf{f}(\mathbf{x})^{\top} \boldsymbol{\beta} + \mathsf{M}(\mathbf{x}),$$

where $M(\mathbf{x})$ is a Gaussian random field with zero mean.

• $\mathcal{Y}(\mathbf{x})$ is observed with random noise,

$$Y_l(\mathbf{x}) = \mathcal{Y}(\mathbf{x}) + \varepsilon_l(\mathbf{x}) = \mathbf{f}(\mathbf{x})^\top \boldsymbol{\beta} + \mathsf{M}(\mathbf{x}) + \varepsilon_l(\mathbf{x}),$$

where $\varepsilon_I(\mathbf{x})$ is the simulation error along the *I*-th sample path.

Suppose that we have n design points x_i, i = 1,..., n, and on design point x_i the simulation is run for m_i replications:

$$\overline{Y}(\mathbf{x}_i) = \frac{1}{m_i} \sum_{l=1}^{m_i} Y_l(\mathbf{x}_i), \text{ and } \overline{\varepsilon}(\mathbf{x}_i) = \frac{1}{m_i} \sum_{l=1}^{m_i} \varepsilon_l(\mathbf{x}_i).$$

The mean squared error (MSE) optimal predictor of Y(z) is given by

$$\hat{\mathcal{Y}}(\mathsf{z}) = \mathsf{f}(\mathsf{z})^\top \beta + \gamma(\mathsf{z})^\top (\Gamma + \Sigma)^{-1} (\overline{\mathsf{Y}} - \mathsf{F}\beta).$$

 Incorporates the response surface's gradient estimators into SK to improve the prediction accuracy of the response surface

$$\mathcal{D}^{k}(\mathbf{x}) = \frac{\partial}{\partial x_{k}} \mathcal{Y}(\mathbf{x}) = \left(\frac{\partial}{\partial x_{k}} \mathbf{f}(\mathbf{x})\right)^{\top} \boldsymbol{\beta} + \frac{\partial}{\partial x_{k}} \mathsf{M}(\mathbf{x}).$$

• The GESK models $D_l^k(\mathbf{x}), k = 1, \dots, d$, as

$$D_l^k(\mathbf{x}) = \mathcal{D}^k(\mathbf{x}) + \epsilon_l^k(\mathbf{x}) = \left(\frac{\partial}{\partial x_k}\mathbf{f}(\mathbf{x})\right)^\top \boldsymbol{\beta} + \frac{\partial}{\partial x_k}\mathbf{M}(\mathbf{x}) + \epsilon_l^k(\mathbf{x}).$$

• $\mathcal{Y}(\mathbf{z})$ is predicted by

$$\widetilde{\mathcal{Y}}(\mathsf{z}) = \mathsf{f}(\mathsf{z})^{\top} \boldsymbol{\beta} + \boldsymbol{\gamma}_{+}(\mathsf{z})^{\top} (\boldsymbol{\Gamma}_{+} + \boldsymbol{\Sigma}_{+})^{-1} (\overline{\mathbf{Y}}_{+} - \mathbf{F}_{+} \boldsymbol{\beta}).$$

▶ D^k(z) is predicted by

$$\partial_k \widetilde{\mathcal{Y}}(\mathsf{z}) = (\partial_k \mathsf{f}(\mathsf{z}))^\top \boldsymbol{\beta} + (\partial_k \boldsymbol{\gamma}_+(\mathsf{z}))^\top (\boldsymbol{\Gamma}_+ + \boldsymbol{\Sigma}_+)^{-1} (\overline{\mathbf{Y}}_+ - \mathbf{F}_+ \boldsymbol{\beta}).$$

Accuracy Analysis

Theorem (4)

Suppose that β , τ^2 , θ and Σ_+ are known, then the MSE of $\widetilde{\mathcal{Y}}(\mathbf{z})$ is smaller than the MSE of $\widehat{\mathcal{Y}}(\mathbf{z})$, i.e.,

$$\mathbb{E}\left[\left(\widetilde{\mathcal{Y}}(\mathsf{z})-\mathcal{Y}(\mathsf{z})
ight)^2
ight] < \mathbb{E}\left[\left(\hat{\mathcal{Y}}(\mathsf{z})-\mathcal{Y}(\mathsf{z})
ight)^2
ight],$$

and the MSE of $\frac{\partial}{\partial z_k} \widetilde{\mathcal{Y}}(\mathbf{z})$ is smaller than the MSE of $\hat{\mathcal{D}}^k(\mathbf{z})$, i.e.,

$$\mathbb{E}\left[\left(\frac{\partial}{\partial z_k}\widetilde{\mathcal{Y}}(\mathbf{z}) - \mathcal{D}^k(\mathbf{z})\right)^2\right] < \mathbb{E}\left[\left(\hat{\mathcal{D}}^k(\mathbf{z}) - \mathcal{D}^k(\mathbf{z})\right)^2\right],$$

for k = 1, ..., d.

Proposition (1) $\frac{\partial}{\partial z_k} \widetilde{\mathcal{Y}}(\mathbf{z}) = \widetilde{\mathcal{D}}^k(\mathbf{z}), \text{ for all } \mathbf{z} \text{ and } k = 1, \dots, d.$

Surface Accuracy for B-S Model

Figure: Boxplots of RMSE for price, delta, vega, rho, and theta surfaces.

Surface Accuracy for Variance Gamma Model

18/18