
Knowledge Gradient for Selection with
Covariates: Consistency and Computation

SHEN Haihui（沈海辉）

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

Joint work with Liang Ding (HKUST), Jeff Hong (Fudan), and Xiaowei Zhang (HKU)

@ 2019 POMS CHINA

June 22, 2019

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue



Introduction Formulation Asymptotics Computation Remarks

Contents

1 Introduction

2 Formulation

3 Asymptotics

4 Computation

5 Remarks

SHEN Haihui Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA 2 / 25



Introduction Formulation Asymptotics Computation Remarks

1 Introduction

2 Formulation

3 Asymptotics

4 Computation

5 Remarks

SHEN Haihui Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA 3 / 25



Introduction Formulation Asymptotics Computation Remarks

Selection of the Best

• Select the best from a finite set of alternatives, whose performances
are unknown and can only be learned by sampling.

• The samples may come from computer simulation or real
experiments.

• E.g., select the best medicine (treatment), advertisement
(recommendation), production line, inventory management, etc.

• Sampling may be expensive (in time and/or money), thereby
budget-constrained.

• Goal: a sampling strategy to learn the performances and identify
the best as efficiently as possible.
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Selection with Covariates

• In many cases, “the best” is not universal but depends on the
covariates (contextual information).

• In the example of personalized medicine, the covariates may be
gender, age, weight, medical history, drug reaction, etc.

• In the example of customized advertisement, the covariates may be
gender, age, location, education, browsing history, etc.

• Goal: a sampling strategy to learn the performance surfaces
(functions) as efficiently as possible.

• With the learned performance surfaces, we can identify the best
given certain covariates.
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Knowledge Gradient

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a
design principle under Bayesian perspective for developing sequential
sampling strategy.

• For selection of the best (without covariates):

• KG-based sampling strategies are widely used;
• the performance is often competitive with or outperforms other

sampling strategies (Ryzhov 2016).

• For selection of the best (with covariates):

• KG-based sampling strategies are emerging (Pearce and Branke
2017);

• the theory is not completed yet, e.g., no theoretical analysis of the
asymptotic behavior of such strategies.

SHEN Haihui Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA 6 / 25



Introduction Formulation Asymptotics Computation Remarks

Knowledge Gradient

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a
design principle under Bayesian perspective for developing sequential
sampling strategy.

• For selection of the best (without covariates):

• KG-based sampling strategies are widely used;
• the performance is often competitive with or outperforms other

sampling strategies (Ryzhov 2016).

• For selection of the best (with covariates):

• KG-based sampling strategies are emerging (Pearce and Branke
2017);

• the theory is not completed yet, e.g., no theoretical analysis of the
asymptotic behavior of such strategies.

SHEN Haihui Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA 6 / 25



Introduction Formulation Asymptotics Computation Remarks

Knowledge Gradient

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a
design principle under Bayesian perspective for developing sequential
sampling strategy.

• For selection of the best (without covariates):

• KG-based sampling strategies are widely used;
• the performance is often competitive with or outperforms other

sampling strategies (Ryzhov 2016).

• For selection of the best (with covariates):

• KG-based sampling strategies are emerging (Pearce and Branke
2017);

• the theory is not completed yet, e.g., no theoretical analysis of the
asymptotic behavior of such strategies.

SHEN Haihui Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA 6 / 25



Introduction Formulation Asymptotics Computation Remarks

What We Did?

• In this research, we

• propose a sampling strategy based on the integrated KG, which is
suitable for more general situation;

• provide a theoretical analysis of the asymptotic behavior of the
sampling strategy;

• propose a stochastic gradient ascent (SGA) algorithm to solve the
sampling strategy.

Pearce and Branke (2017) Our Work

Sampling Noise homoscedastic can be heteroscedastic
Sampling Cost constant can be different

Asymptotic Analysis numerical theoretical
To Solve sample average approximation SGA
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Difference with Multi-armed Bandit (MAB)

• Selection of the best vs. MAB problem

• Selection of the best with Covariates vs. Contextual MAB problem

• Similar settings with different focuses:

• MAB focuses on minimizing the regret which is caused by choosing
inferior alternatives and accumulated during the sampling process;

• selection of the best focuses on identifying the best alternative
eventually when the budget is exhausted.
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Setting

• M competing alternatives with unknown performance surface θi(x),
i = 1, . . . ,M .

• The covariates x = (x1, . . . , xd)
ᵀ ∈ X ⊂ Rd has density γ(x).

• We want to learn offline: argmax1≤i≤M θi(x), for x ∈ X .

• For simplification purpose, in this presentation we just consider the
constant sampling cost (≡ 1), which is not necessary.

• The budget is then N samples.

• Sample on alternative i at location x has independent normal
distribution with unknown mean θi(x) and known variance λi(x).

• We need a good strategy to guide the sampling decision (on which
alternative and at what location) until the N samples are taken.
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Bayesian Perspective

• Assign prior for {θ1(x), . . . , θM (x)}, under which θi(x)’s are
independent Gaussian processes with:

• mean function µ0
i (x) := E[θi(x)|F0];

• covariance function k0i (x,x
′) := Cov[θi(x), θi(x

′)|F0].

• After n samples, {θ1(x), . . . , θM (x)} are still independent Gaussian
processes under the posterior with:

• mean function µn
i (x) := E[θi(x)|Fn];

• covariance function kni (x,x
′) := Cov[θi(x), θi(x

′)|Fn].

• µni (x) is used as our estimator (or predictor) of θi(x), and kni (x,x)
characterizes the uncertainty at θi(x).

• Updating Equation: if the n-th sample y is taken on i at v, then

µn
i (x) = µn−1

i (x) + kn−1
i (x,v)[kn−1

i (v,v) + λi(v)]
−1[y − µn−1

i (v)],

kni (x,x
′) = kn−1

i (x,x′)− kn−1
i (x,v)[kn−1

i (v,v) + λi(v)]
−1kn−1

i (v,x′).
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Objective of Sampling Strategy

• After N samples, we will estimate argmax1≤i≤M θi(x) via

argmax1≤i≤M µNi (x).

• View maxi µ
N
i (x) as a terminal “reward”:

• its expected value depends on the sampling strategy π;
• maximize the reward ⇐⇒ minimize the “opportunity cost”

maxi θi(x)−maxi µ
N
i (x).

• The objective becomes

max
π

∫

X
Eπ

[
max

1≤i≤M
µNi (x)

]
γ(x)dx.
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Integrated Knowledge Gradient

• Let (an,vn) denote the n-th sampling decision, i.e., on alternative
an at location vn, and Sn := (µn1 , . . . , µ

n
M , k

n
1 , . . . , k

n
M ) the random

state after the n-th sample.

• If N = 1, the optimal strategy is

argmax
1≤i≤M,x∈X

∫

X
E
[

max
1≤a≤M

µ1
a(v)

∣∣∣S0, a1 = i,v1 = x
]
γ(v)dv.

• Myopic Strategy: treat each time as if there were only one sample
left, and allocate the n-th sample according to

argmax
1≤i≤M,x∈X

∫

X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]
γ(v)dv.
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Integrated Knowledge Gradient

• The previous myopic strategy is equivalent to maximizing
∫

X
E
[

max
1≤a≤M

µn
a(v)− max

1≤a≤M
µn−1
a (v)

︸ ︷︷ ︸
independent of (i,x)

∣∣∣Sn−1, an = i,vn = x

]
γ(v)dv.

• It is the integrated expected value of information gained by
sampling (i,x).

• We always search for (i,x) that maximizes such integrated expected
information gain, thus refer it as “Integrated Knowledge Gradient”
(IKG) sampling strategy.
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Numerical Illustration
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Theoretical Result

Theorem 1

Under some mild assumptions, the IKG sampling strategy is consistent,
that is, as N →∞, for all x ∈ X ,

(i) kNi (x,x)→ 0 a.s. for i = 1, . . . ,M ;

(ii) µNi (x)→ θi(x) a.s. for i = 1, . . . ,M ;

(iii) argmaxi µ
N
i (x)→ argmaxi θi(x) a.s.
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Compuation

• Recall that to decide the n-th sample, we need to solve

argmax
1≤i≤M,x∈X

∫

X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]
γ(v)dv.

• So, we actually need to, for each i, solve

argmax
x∈X

∫

X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]

︸ ︷︷ ︸
denoted as hn

i (v,x)

γ(v)dv.

• hni (v,x) can be computed explicitly.

• The computational challenge lies in the numerical integration.
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• So, we actually need to, for each i, solve

argmax
x∈X

∫

X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]

︸ ︷︷ ︸
denoted as hn

i (v,x)

γ(v)dv.

• hni (v,x) can be computed explicitly.

• The computational challenge lies in the numerical integration.
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Stochastic Gradient Ascent

• We need to, for each i, solve

argmax
x∈X

∫

X
hni (v,x)γ(v)dv = argmax

x∈X
E[hni (ξ,x)],

where ξ is a X -valued random variable with density γ(·).

• To solve such a stochastic optimization problem, the sample
average approximation would be computationally prohibitive if X is
high-dimensional.

• Note that ∂
∂xh

n
i (ξ,x) can also be computed explicitly here, which is

an unbiased estimator of ∇x E[hni (ξ,x)] under mild regularity
conditions (L’Ecuyer 1995).

• So we propose to use the stochastic gradient ascent to solve the
above stochastic optimization problem.
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Algorithm
Zhang et al.: Knowledge Gradient for Selection with Covariates: Consistency and Computation

22 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 1 Computing log ÎKG
n
(i,x).

Inputs: µn1 , . . . , µ
n
M , k

n
1 , . . . , k

n
M , λ1, . . . , λM ,ξ1, . . . ,ξJ , i,x, ci(x)

Outputs: log IKG
1: J ←∅, log IKG ←−∞
2: for j = 1 to J do
3: if |σ̃ni (ξj ,x)|> 0 then
4: u← |∆n

i (ξj)|/|σ̃ni (ξj ,x)|
5: if u< 20 then
6: r←Φ(−u)/φ(u)
7: else
8: r← u/(u2 + 1)
9: end if

10: gj← log

(
|σ̃n

i (ξj ,x)|√
2πJ

)
− 1

2
u2 + log1p(−ur) . log1p(x) = log(1 +x).

11: J ←{J , j}
12: end if
13: end for
14: if J 6= ∅ then
15: g∗←maxj∈J gj
16: log IKG ← g∗+ log

∑
j∈J e

gj−g∗ − log(ci(x))
17: end if

Algorithm 2 Approximately Computing (an,vn) Using SGA.

Inputs: µn1 , . . . , µ
n
M , k

n
1 , . . . , k

n
M , λ1, . . . , λM ,ξ1, . . . ,ξJ , c1, . . . , cM

Outputs: ân, v̂n

1: for i= 1 to M do
2: x1← initial value
3: for k= 1 to K do
4: Generate independent sample {ξk1, . . . ,ξkm} from density γ(·)
5: xk+1←ΠX [xk + bkḡ

n
i (ξk1, . . . ,ξkm,xk)] . Mini-batch SGA

6: end for
7: v̂ni ← 1

K+2−K0

∑K+1
k=K0

xk . Polyak-Ruppert averaging

8: log IKGi ← log ÎKG
n
(i, v̂ni ) . Call Algorithm 1

9: end for
10: ân← arg maxi log IKGi

11: v̂n← v̂nân

5.3. Numerical Experiments. In this section, we evaluate the performance of the IKG pol-
icy via numerical experiments due to two reasons. First, the theoretical analysis, albeit establishing
the consistency of the IKG policy in an large-sample asymptotic regime, does not provide a guar-
antee on the finite-sample performance of the policy. Second, the analysis has implicitly assumed
that the sampling decisions of the IKG policy in eq. (13) can be computed exactly, while in practice
it needs to be solved numerically via methods such as Algorithm 2 that we have proposed.

The numerical experiments are conducted on synthetic problems, with the number of alterna-
tives M = 5 and the dimensionality d = 1,3,5,7. For each i = 1, . . . ,M , the true performance of
alternative i is the revised Griewank function,

θi(x) =
d∑

j=1

x2
j

4000
− 1.5d−1

d∏

j=1

cos

(
xj√
ij

)
, x∈X = [0,10]d.

Further, we set sampling variance λi(x)≡ 0.01, and take prior µ0
i (x) = µ0(x)≡ 0, and k0

i (x,x
′) =

k0(x,x′) = exp
(
−‖x−x′‖2

)
. We set the cost function ci(x) ≡ 1 for each i = 1, . . . ,M , but will

investigate the impact of a different cost function later.
We consider two density functions for the covariates:

(1) Uniform distribution on X : γ(x) = 1/|X |.
(2) Multivariate normal distribution with mean 0 and covariance matrix 42I truncated on X :

γ(x) = φ(x;0,42I)/
∫
X φ(v;0,42I)dv.
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Concluding Remarks

• We propose an IKG sampling strategy, which is suitable for more
general situation.

• We provide a theoretical analysis of the asymptotic behavior of the
sampling strategy.

• We propose a SGA algorithm to solve the sampling strategy.
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Thank you for your attention!

SHEN Haihui
shenhaihui@sjtu.edu.cn

June 22, 2019
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