Knowledge Gradient for Selection with Covariates: Consistency and Computation

SHEN Haihui (沈海辉)

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Joint work with Liang Ding (HKUST), Jeff Hong (Fudan), and Xiaowei Zhang (HKU)

@ 2019 POMS CHINA

June 22, 2019

航运与物流研究院

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	O
Contents				

- **2** Formulation
- **3** Asymptotics
- **4** Computation

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	0

- **2** Formulation
- **3** Asymptotics
- **4** Computation

5 Remarks

Introduction	Formulation	Asymptotics	Computation	Remarks
●0000	00000	00	000	0
Selection of t	the Best			

- Select the best from a finite set of alternatives, whose performances are unknown and can only be learned by sampling.
- The samples may come from computer simulation or real experiments.
- E.g., select the best medicine (treatment), advertisement (recommendation), production line, inventory management, etc.

Introduction	Formulation	Asymptotics	Computation	Remarks
●0000	00000	00	000	0
Selection of t	the Best			

- Select the best from a finite set of alternatives, whose performances are unknown and can only be learned by sampling.
- The samples may come from computer simulation or real experiments.
- E.g., select the best medicine (treatment), advertisement (recommendation), production line, inventory management, etc.
- Sampling may be expensive (in time and/or money), thereby budget-constrained.
- **Goal**: a sampling strategy to learn the performances and identify the best as efficiently as possible.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●○○○	00000	00	000	O
Selection wit	h Covariates			

- In many cases, "the best" is not universal but depends on the covariates (contextual information).
- In the example of personalized medicine, the covariates may be gender, age, weight, medical history, drug reaction, etc.
- In the example of customized advertisement, the covariates may be gender, age, location, education, browsing history, etc.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●○○○	00000	00	000	O
Selection wit	h Covariates			

- In many cases, "the best" is not universal but depends on the covariates (contextual information).
- In the example of personalized medicine, the covariates may be gender, age, weight, medical history, drug reaction, etc.
- In the example of customized advertisement, the covariates may be *gender*, *age*, *location*, *education*, *browsing history*, etc.
- **Goal**: a sampling strategy to learn the performance surfaces (functions) as efficiently as possible.
 - With the learned performance surfaces, we can identify the best given certain covariates.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●○○	00000	00	000	0
Knowledge G	radient			

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a design principle under Bayesian perspective for developing sequential sampling strategy.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●○○	00000	00	000	0
Knowledge G	radient			

- Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a design principle under Bayesian perspective for developing sequential sampling strategy.
- For selection of the best (*without* covariates):
 - KG-based sampling strategies are widely used;
 - the performance is often competitive with or outperforms other sampling strategies (Ryzhov 2016).
- For selection of the best (*with* covariates):
 - KG-based sampling strategies are emerging (Pearce and Branke 2017);
 - the theory is not completed yet, e.g., no theoretical analysis of the asymptotic behavior of such strategies.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●○○	00000	00	000	O
Knowledge G	radient			

- Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a design principle under Bayesian perspective for developing sequential sampling strategy.
- For selection of the best (*without* covariates):
 - KG-based sampling strategies are widely used;
 - the performance is often competitive with or outperforms other sampling strategies (Ryzhov 2016).
- For selection of the best (*with* covariates):
 - KG-based sampling strategies are emerging (Pearce and Branke 2017);
 - the theory is not completed yet, e.g., no theoretical analysis of the asymptotic behavior of such strategies.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●●○	00000	00	000	O
What We [)id?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●●○	00000	00	000	O
What We [)id?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise	homoscedastic	can be heteroscedastic
Sampling Cost	constant	can be different

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●●○	00000	00	000	O
What We	Did?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise Sampling Cost	homoscedastic constant	can be heteroscedastic can be different
Asymptotic Analysis	numerical	theoretical

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●●○	00000	00	000	O
What We D	id?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise Sampling Cost	homoscedastic constant	can be heteroscedastic can be different
To Solve	sample average approximation	SGA

Introduction	Formulation	Asymptotics	Computation	Remarks
•••••	00000	00	000	O
Difference wi	th Multi-arme	d Bandit (M	AB)	

- Selection of the best vs. MAB problem
- Selection of the best with Covariates vs. Contextual MAB problem

Introduction	Formulation	Asymptotics	Computation	Remarks
●●●●●	00000	00	000	O
Difference w	ith Multi-ar	rmed Bandit (MAB)	

- Selection of the best vs. MAB problem
- Selection of the best with Covariates vs. Contextual MAB problem
- Similar settings with different focuses:
 - MAB focuses on minimizing the regret which is caused by choosing inferior alternatives and accumulated during the sampling process;
 - selection of the best focuses on identifying the best alternative eventually when the budget is exhausted.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	0

- **2** Formulation
- **3** Asymptotics

4 Computation

5 Remarks

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●0000	00	000	O
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(x)$, i = 1, ..., M.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^\intercal \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 < i < M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●0000	00	000	O
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(x)$, i = 1, ..., M.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^{\mathsf{T}} \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 \leq i \leq M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.
- For simplification purpose, in this presentation we just consider the constant sampling cost ($\equiv 1$), which is not necessary.
- The budget is then N samples.
- Sample on alternative *i* at location \boldsymbol{x} has independent normal distribution with *unknown* mean $\theta_i(\boldsymbol{x})$ and *known* variance $\lambda_i(\boldsymbol{x})$.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●0000	00	000	O
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(x)$, i = 1, ..., M.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^{\mathsf{T}} \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 \leq i \leq M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.
- For simplification purpose, in this presentation we just consider the constant sampling cost ($\equiv 1$), which is not necessary.
- The budget is then N samples.
- Sample on alternative i at location x has independent normal distribution with unknown mean θ_i(x) and known variance λ_i(x).
- We need a good strategy to guide the sampling decision (on *which alternative* and at *what location*) until the N samples are taken.

SHEN Haihui

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●000	00	000	O
Bayesian Per	spective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(\boldsymbol{x}) \coloneqq \mathbb{E}[heta_i(\boldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●000	00	000	O
Bayesian Per	spective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(oldsymbol{x}) \coloneqq \mathbb{E}[heta_i(oldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^n(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x}) | \mathcal{F}^n];$
 - covariance function kⁿ_i(x, x') := Cov[θ_i(x), θ_i(x')|𝔅ⁿ].

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●000	00	000	O
Bayesian Pe	rspective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(\boldsymbol{x}) \coloneqq \mathbb{E}[heta_i(\boldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^n(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x}) | \mathcal{F}^n];$
 - covariance function $k_i^n(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^n].$
- $\mu_i^n(x)$ is used as our estimator (or predictor) of $\theta_i(x)$, and $k_i^n(x, x)$ characterizes the uncertainty at $\theta_i(x)$.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●000	00	000	O
Bayesian Per	spective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(oldsymbol{x}) \coloneqq \mathbb{E}[heta_i(oldsymbol{x})| \mathbb{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^{\mathbf{n}}(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x})|\mathcal{F}^{\mathbf{n}}];$
 - covariance function $k_i^n(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^n].$
- $\mu_i^n(x)$ is used as our estimator (or predictor) of $\theta_i(x)$, and $k_i^n(x, x)$ characterizes the uncertainty at $\theta_i(x)$.
- Updating Equation: if the n-th sample y is taken on i at v, then

 $\mu_i^n(\boldsymbol{x}) = \mu_i^{n-1}(\boldsymbol{x}) + k_i^{n-1}(\boldsymbol{x}, \boldsymbol{v})[k_i^{n-1}(\boldsymbol{v}, \boldsymbol{v}) + \lambda_i(\boldsymbol{v})]^{-1}[\boldsymbol{y} - \mu_i^{n-1}(\boldsymbol{v})],$ $k_i^n(\boldsymbol{x}, \boldsymbol{x}') = k_i^{n-1}(\boldsymbol{x}, \boldsymbol{x}') - k_i^{n-1}(\boldsymbol{x}, \boldsymbol{v})[k_i^{n-1}(\boldsymbol{v}, \boldsymbol{v}) + \lambda_i(\boldsymbol{v})]^{-1}k_i^{n-1}(\boldsymbol{v}, \boldsymbol{x}').$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●●○○	00	000	O
Objective of	Sampling S	Strategy		

• After N samples, we will estimate $\operatorname{argmax}_{1 \leq i \leq M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \leq i \leq M} \mu_i^N(\boldsymbol{x})$.

Objective of Sampling Strategy

- After N samples, we will estimate $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \le i \le M} \mu_i^N(\boldsymbol{x})$.
- View $\max_i \mu_i^N(\boldsymbol{x})$ as a terminal "reward":
 - its expected value depends on the sampling strategy π;
 - maximize the reward \iff minimize the "opportunity cost" $\max_i \theta_i(\boldsymbol{x}) \max_i \mu_i^N(\boldsymbol{x}).$

Objective of Sampling Strategy

- After N samples, we will estimate $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \le i \le M} \mu_i^N(\boldsymbol{x})$.
- View $\max_i \mu_i^N(\boldsymbol{x})$ as a terminal "reward":
 - its expected value depends on the sampling strategy π ;
 - maximize the reward \iff minimize the "opportunity cost" $\max_i \theta_i(\boldsymbol{x}) \max_i \mu_i^N(\boldsymbol{x}).$
- The objective becomes

$$\max_{\pi} \int_{\mathcal{X}} \mathbb{E}^{\pi} \left[\max_{1 \leq i \leq M} \mu_i^N(\boldsymbol{x}) \right] \gamma(\boldsymbol{x}) \mathsf{d}\boldsymbol{x}.$$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	●●●●0	00	000	O
Integrated K	Knowledge G	Gradient		

• Let (a^n, \boldsymbol{v}^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location \boldsymbol{v}^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random state after the *n*-th sample.

- Let (a^n, v^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location v^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random state after the *n*-th sample.
- If N = 1, the optimal strategy is

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^1(\boldsymbol{v}) \, \middle| \, S^0, a^1 = i, \boldsymbol{v}^1 = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

- Let (a^n, v^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location v^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random state after the *n*-th sample.
- If N = 1, the optimal strategy is

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^1(\boldsymbol{v}) \, \Big| \, S^0, a^1 = i, \boldsymbol{v}^1 = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• Myopic Strategy: treat each time as if there were only one sample left, and allocate the *n*-th sample according to

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• The previous myopic strategy is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \le a \le M} \mu_a^n(\boldsymbol{v}) - \underbrace{\max_{1 \le a \le M} \mu_a^{n-1}(\boldsymbol{v})}_{\text{independent of } (i, \boldsymbol{x})} \middle| S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• The previous myopic strategy is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \le a \le M} \mu_a^n(\boldsymbol{v}) - \max_{\substack{1 \le a \le M \\ \text{independent of } (i, \boldsymbol{x})}} \mu_a^{n-1}(\boldsymbol{v}) \right| S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• It is the integrated expected value of information gained by sampling (i, x).

The previous myopic strategy is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E}\left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) - \max_{\substack{1 \leq a \leq M \\ \text{independent of } (i, \boldsymbol{x})}} \mu_a^{n-1}(\boldsymbol{v}) \ \middle| \ S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

- It is the integrated expected value of information gained by sampling (i, x).
- We always search for (i, x) that maximizes such integrated expected information gain, thus refer it as "Integrated Knowledge Gradient" (IKG) sampling strategy.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	0

2 Formulation

3 Asymptotics

4 Computation

5 Remarks

00000	00000		000	0
Introduction	Formulation	Asymptotics	Computation	Remarks

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	••	000	O
Theoretic	al Result			

Theorem 1

Under some mild assumptions, the IKG sampling strategy is consistent, that is, as $N \to \infty$, for all $x \in \mathcal{X}$,

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	0

- 2 Formulation
- **3** Asymptotics

4 Computation

5 Remarks

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●00	O
Compuation				

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●00	0
Compuation				

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• So, we actually need to, for each *i*, solve

$$\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\int_{\mathcal{X}}\mathbb{E}\left[\max_{1\leq a\leq M}\mu_{a}^{n}(\boldsymbol{v})\,\Big|\,S^{n-1},a^{n}=i,\boldsymbol{v}^{n}=\boldsymbol{x}\right]\gamma(\boldsymbol{v})\mathsf{d}\boldsymbol{v}.$$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●00	0
Compuation				

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• So, we actually need to, for each *i*, solve

$$\underset{\boldsymbol{x}\in\mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \underbrace{\mathbb{E}\left[\max_{1\leq a\leq M} \mu_{a}^{n}(\boldsymbol{v}) \middle| S^{n-1}, a^{n}=i, \boldsymbol{v}^{n}=\boldsymbol{x}\right]}_{\operatorname{\mathsf{denoted}}} \gamma(\boldsymbol{v}) \mathsf{d}\boldsymbol{v}.$$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●00	O
Compuation				

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• So, we actually need to, for each *i*, solve

$$\underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \underbrace{\mathbb{E}\left[\max_{1 \leq a \leq M} \mu_{a}^{n}(\boldsymbol{v}) \middle| S^{n-1}, a^{n} = i, \boldsymbol{v}^{n} = \boldsymbol{x}\right]}_{\operatorname{\mathsf{denoted}}} \gamma(\boldsymbol{v}) \mathsf{d}\boldsymbol{v}.$$

- $h_i^n(\boldsymbol{v}, \boldsymbol{x})$ can be computed explicitly.
- The computational challenge lies in the numerical integration.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●●○	0
Stochastic G	radient Ascent			

• We need to, for each *i*, solve

$$\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\int_{\mathcal{X}}h_{i}^{n}(\boldsymbol{v},\boldsymbol{x})\gamma(\boldsymbol{v})\mathsf{d}\boldsymbol{v}=\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\mathbb{E}[h_{i}^{n}(\boldsymbol{\xi},\boldsymbol{x})],$$

where $\pmb{\xi}$ is a $\mathcal{X}\text{-valued}$ random variable with density $\gamma(\cdot).$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●●○	O
Stochastic	Gradient Aso	cent		

• We need to, for each *i*, solve

$$\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\int_{\mathcal{X}}h_{i}^{n}(\boldsymbol{v},\boldsymbol{x})\gamma(\boldsymbol{v})\mathsf{d}\boldsymbol{v}=\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\mathbb{E}[h_{i}^{n}(\boldsymbol{\xi},\boldsymbol{x})],$$

where $\boldsymbol{\xi}$ is a \mathcal{X} -valued random variable with density $\gamma(\cdot)$.

• To solve such a stochastic optimization problem, the sample average approximation would be computationally prohibitive if \mathcal{X} is high-dimensional.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●●○	O
Stochastic (Gradient Aso	cent		

• We need to, for each *i*, solve

$$\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\int_{\mathcal{X}}h_{i}^{n}(\boldsymbol{v},\boldsymbol{x})\gamma(\boldsymbol{v})\mathsf{d}\boldsymbol{v}=\operatorname*{argmax}_{\boldsymbol{x}\in\mathcal{X}}\mathbb{E}[h_{i}^{n}(\boldsymbol{\xi},\boldsymbol{x})],$$

where $\boldsymbol{\xi}$ is a \mathcal{X} -valued random variable with density $\gamma(\cdot)$.

- To solve such a stochastic optimization problem, the sample average approximation would be computationally prohibitive if \mathcal{X} is high-dimensional.
- Note that ∂/∂x h_iⁿ(ξ, x) can also be computed explicitly here, which is an unbiased estimator of ∇_x E[h_iⁿ(ξ, x)] under mild regularity conditions (L'Ecuyer 1995).
- So we propose to use the stochastic gradient ascent to solve the above stochastic optimization problem.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	●●●	O
Algorithm				

Algorithm 1 Computing log IKG (i, x). Inputs: $\mu_1^n, \dots, \mu_M^n, k_1^n, \dots, k_M^n, \lambda_1, \dots, \lambda_M, \xi_1, \dots, \xi_J, i, x, c_i(x)$ Outputs: log_IKG 1: $\mathcal{J} \leftarrow \emptyset$, $\log_{-}IKG \leftarrow -\infty$ 2: for j = 1 to J do if $|\tilde{\sigma}_i^n(\boldsymbol{\xi}_i, \boldsymbol{x})| > 0$ then 3: $u \leftarrow |\Delta_i^n(\boldsymbol{\xi}_i)| / |\tilde{\sigma}_i^n(\boldsymbol{\xi}_i, \boldsymbol{x})|$ 4: if u < 20 then $r \leftarrow \Phi(-u)/\phi(u)$ 6: 7: else $r \leftarrow u/(u^2+1)$ end if 8: 9: $g_j \leftarrow \log \left(\frac{|\tilde{\sigma}_i^n(\boldsymbol{\xi}_j, \boldsymbol{x})|}{\sqrt{2\pi J}} \right) - \frac{1}{2}u^2 + \log \ln(-ur)$ 10: $\triangleright \log \log(x) = \log(1+x).$ $\mathcal{J} \leftarrow \{\mathcal{J}, j\}$ end if 12. 13: end for 14: if $\mathcal{J} \neq \emptyset$ then 15: $q^* \leftarrow \max_{i \in \mathcal{J}} g_i$ $log_{IKG} \leftarrow g^* + log \sum_{i \in T} e^{g_j - g^*} - log(c_i(\boldsymbol{x}))$ 16^{-1} 17: end if

Algorithm 2 Approximately Computing (a^n, v^n) Using SGA.

Inputs: $\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n, \lambda_1, \ldots, \lambda_M, \boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_J, c_1, \ldots, c_M$ Outputs: \hat{a}^n, \hat{v}^n 1: for i = 1 to M do 2: $x_1 \leftarrow \text{initial value}$ 3: for k = 1 to K do 4: Generate independent sample $\{\xi_{k1}, \dots, \xi_{km}\}$ from density $\gamma(\cdot)$ $\boldsymbol{x}_{k+1} \leftarrow \Pi_{\mathcal{X}}[\boldsymbol{x}_k + b_k \bar{g}_i^n(\xi_{k1}, \dots, \xi_{km}, \boldsymbol{x}_k)]$ 5: ▷ Mini-batch SGA $\begin{array}{c} \mathbf{u}_{k+1}^{n} \in \mathbf{u}_{k} \mid \mathbf{u}_{k}^{n} \in \mathbf{u}_{k}^{n} \\ \mathbf{u}_{i}^{n} \leftarrow \frac{1}{K+2-K_{0}} \sum_{k=K_{0}}^{K+1} \boldsymbol{x}_{k} \end{array}$ 6: 7: ▷ Polyak-Ruppert averaging $log_IKG_i \leftarrow log_IKG^n(i, \hat{v}_i^n)$ ▷ Call Algorithm 1 8: 9: end for 10: $\hat{a}^n \leftarrow \arg \max_i \log_I KG_i$ 11: $\hat{v}^n \leftarrow \hat{v}_{zn}^n$

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	O

- **2** Formulation
- **3** Asymptotics
- **4** Computation

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	●
Concludin	g Remarks			

- We propose an IKG sampling strategy, which is suitable for more general situation.
- We provide a theoretical analysis of the asymptotic behavior of the sampling strategy.
- We propose a SGA algorithm to solve the sampling strategy.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	O
References				

- Frazier, P. I., W. Powell, and S. Dayanik (2008). A knowledge gradient policy for sequential information collection. *SIAM J. Control Optim.* 47(5), 2410-2439.
- L'Ecuyer, P. (1995). Note: On the interchange of derivative and expectation for likelihood ratio derivative estimators. *Manag. Sci.* 41(4), 738-747.
- Pearce, M. and J. Branke (2017). Efficient expected improvement estimation for continuous multiple ranking and selection. In *Proc. 2017 Winter Simulation Conf.*, 2161-2172.
- Ryzhov, I. O. (2016). On the convergence rates of expected improvement methods. *Oper. Res.* 64(6), 1515-1528.

Introduction	Formulation	Asymptotics	Computation	Remarks
00000	00000	00	000	O

Thank you for your attention!

SHEN Haihui shenhaihui@sjtu.edu.cn

June 22, 2019

SHEN Haihui

Knowledge Gradient for Selection with Covariates @ 2019 POMS CHINA

25 / 25