Knowledge Gradient for Selection with Covariates: Consistency and Computation

Haihui Shen

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Joint work with Liang Ding (Texas A&M), Jeff Hong (Fudan), and Xiaowei Zhang (HKU)

@ 2020 INFORMS Annual Meeting (Virtual)

November 7-13, 2020

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		O
Contents				

2 Formulation

3 Asymptotics

4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		O

- **2** Formulation
- 3 Asymptotics
- 4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●000	00000	00		O
Selection of	f the Best			

- Select the best from a finite set of alternatives, whose performances are unknown and can only be learned by sampling.
- The samples may come from computer simulation or real experiments.
- E.g., select the best medicine (treatment), advertisement (recommendation), production line, inventory management, etc.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●000	00000	00		O
Selection of	f the Best			

- Select the best from a finite set of alternatives, whose performances are unknown and can only be learned by sampling.
- The samples may come from computer simulation or real experiments.
- E.g., select the best medicine (treatment), advertisement (recommendation), production line, inventory management, etc.
- Sampling may be expensive (in time and/or money), thereby budget-constrained.
- **Goal**: a sampling strategy to learn the performances and identify the best as efficiently as possible.

•••••	00000	00	00	0
Selection	with Covari	ates		

- In many cases, "the best" is not universal but depends on the covariates (contextual information).
- In the example of personalized medicine, the covariates may be gender, age, weight, medical history, drug reaction, etc.
- In the example of customized advertisement, the covariates may be gender, age, location, education, browsing history, etc.

Soloction	with Covari	atos		
Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●○○	00000	00		0

- In many cases, "the best" is not universal but depends on the covariates (contextual information).
- In the example of personalized medicine, the covariates may be gender, age, weight, medical history, drug reaction, etc.
- In the example of customized advertisement, the covariates may be gender, age, location, education, browsing history, etc.
- **Goal**: a sampling strategy to learn the performance surfaces (functions) as efficiently as possible.
 - With the learned performance surfaces, we can identify the best alternative once the covariates are given (or observed).

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●○	00000	00	00	0
Knowledge	Gradient			

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a sequential sampling strategy under Bayesian perspective.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●○	00000	00		0
Knowledge	Gradient			

- Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a sequential sampling strategy under Bayesian perspective.
- For selection of the best (*without* covariates):
 - KG-based sampling strategies are widely used;
 - the performance is often competitive with or outperforms other sampling strategies (Ryzhov 2016).
- For selection of the best *with* covariates:
 - KG-based sampling strategies are emerging (Pearce and Branke 2017);
 - the theory is not complete yet, e.g., no theoretical analysis of the asymptotic behavior of such strategies.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●○	00000	00		0
Knowledge	Gradient			

- Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a sequential sampling strategy under Bayesian perspective.
- For selection of the best (*without* covariates):
 - KG-based sampling strategies are widely used;
 - the performance is often competitive with or outperforms other sampling strategies (Ryzhov 2016).
- For selection of the best *with* covariates:
 - KG-based sampling strategies are emerging (Pearce and Branke 2017);
 - the theory is not complete yet, e.g., no theoretical analysis of the asymptotic behavior of such strategies.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●●	00000	00	00	0
What We [Did?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●●	00000	00	00	0
What We [Did?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise	homoscedastic	can be heteroscedastic
Sampling Cost	constant	can be different

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●●	00000	00		O
What We	Did?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise	homoscedastic	can be heteroscedastic
Sampling Cost	constant	can be different
Asymptotic Analysis	numerical	theoretical

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
●●●●	00000	00		O
What We I	Did?			

- In this research, we
 - propose a sampling strategy based on the integrated KG, which is suitable for more general situation;
 - provide a theoretical analysis of the asymptotic behavior of the sampling strategy;
 - propose a stochastic gradient ascent (SGA) algorithm to solve the sampling strategy.

	Pearce and Branke (2017)	Our Work
Sampling Noise Sampling Cost	homoscedastic constant	can be heteroscedastic can be different
Asymptotic Analysis To Solve	numerical sample average approximation	theoretical SGA

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		O

2 Formulation

3 Asymptotics

4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●0000	00	00	O
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(\boldsymbol{x})$, $i = 1, \dots, M$.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^\intercal \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 < i < M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●0000	00		0
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(\boldsymbol{x})$, $i = 1, \dots, M$.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^{\mathsf{T}} \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.
- For simplification purpose, in this presentation we just consider the constant sampling cost ($\equiv 1$), which is not necessary.
- The budget is N samples.
- Sample on alternative i at location x has independent normal distribution with unknown mean θ_i(x) and known variance λ_i(x).

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●0000	00		0
Setting				

- M competing alternatives with *unknown* performance surface $\theta_i(\boldsymbol{x})$, $i = 1, \ldots, M$.
- The covariates $\boldsymbol{x} = (x_1, \dots, x_d)^{\mathsf{T}} \in \mathcal{X} \subset \mathbb{R}^d$ has density $\gamma(\boldsymbol{x})$.
- We want to learn *offline*: $\operatorname{argmax}_{1 \leq i \leq M} \theta_i(\boldsymbol{x})$, for $\boldsymbol{x} \in \mathcal{X}$.
- For simplification purpose, in this presentation we just consider the constant sampling cost ($\equiv 1$), which is not necessary.
- The budget is N samples.
- Sample on alternative i at location x has independent normal distribution with unknown mean θ_i(x) and known variance λ_i(x).
- We need a good strategy to guide the sampling decision (on *which alternative* and at *what location*) until the N samples are taken.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●000	00		O
Bavesian	Perspective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(\boldsymbol{x}) \coloneqq \mathbb{E}[heta_i(\boldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●000	00		O
Bavesian	Perspective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(oldsymbol{x}) \coloneqq \mathbb{E}[heta_i(oldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^n(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x}) | \mathcal{F}^n];$
 - covariance function kⁿ_i(x, x') := Cov[θ_i(x), θ_i(x')|𝔅ⁿ].

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●000	00		O
Bavesian	Perspective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(oldsymbol{x}) \coloneqq \mathbb{E}[heta_i(oldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^n(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x}) | \mathcal{F}^n];$
 - covariance function $k_i^n(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^n].$
- $\mu_i^n(x)$ is used as our estimator (or predictor) of $\theta_i(x)$, and $k_i^n(x, x)$ characterizes the uncertainty at $\theta_i(x)$.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●000	00		O
Bavesian	Perspective			

- Assign prior for $\{\theta_1(x), \ldots, \theta_M(x)\}$, under which $\theta_i(x)$'s are independent Gaussian processes with:
 - mean function $\mu_i^0(oldsymbol{x}) \coloneqq \mathbb{E}[heta_i(oldsymbol{x})|\mathcal{F}^0];$
 - covariance function $k_i^0(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^0].$
- After *n* samples, $\{\theta_1(x), \ldots, \theta_M(x)\}$ are still independent Gaussian processes under the posterior with:
 - mean function $\mu_i^n(\boldsymbol{x}) \coloneqq \mathbb{E}[\theta_i(\boldsymbol{x}) | \mathcal{F}^n];$
 - covariance function $k_i^n(\boldsymbol{x}, \boldsymbol{x}') \coloneqq \operatorname{Cov}[\theta_i(\boldsymbol{x}), \theta_i(\boldsymbol{x}') | \mathcal{F}^n].$
- $\mu_i^n(x)$ is used as our estimator (or predictor) of $\theta_i(x)$, and $k_i^n(x, x)$ characterizes the uncertainty at $\theta_i(x)$.
- Updating Equation: if the n-th sample y is taken on i at v, then

 $\mu_i^n(\boldsymbol{x}) = \mu_i^{n-1}(\boldsymbol{x}) + k_i^{n-1}(\boldsymbol{x}, \boldsymbol{v})[k_i^{n-1}(\boldsymbol{v}, \boldsymbol{v}) + \lambda_i(\boldsymbol{v})]^{-1}[\boldsymbol{y} - \mu_i^{n-1}(\boldsymbol{v})],$ $k_i^n(\boldsymbol{x}, \boldsymbol{x}') = k_i^{n-1}(\boldsymbol{x}, \boldsymbol{x}') - k_i^{n-1}(\boldsymbol{x}, \boldsymbol{v})[k_i^{n-1}(\boldsymbol{v}, \boldsymbol{v}) + \lambda_i(\boldsymbol{v})]^{-1}k_i^{n-1}(\boldsymbol{v}, \boldsymbol{x}').$

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●●○○	00		0
Objective of	of Sampling	g Strategy		

• After N samples, we will estimate $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \le i \le M} \mu_i^N(\boldsymbol{x})$.

- After N samples, we will estimate $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \le i \le M} \mu_i^N(\boldsymbol{x})$.
- View $\max_i \mu_i^N(\boldsymbol{x})$ as a terminal reward under Bayesian perspective:
 - its expected value depends on a sampling strategy π;
 - we want to maximize this expected reward.

- After N samples, we will estimate $\operatorname{argmax}_{1 \le i \le M} \theta_i(\boldsymbol{x})$ via $\operatorname{argmax}_{1 \le i \le M} \mu_i^N(\boldsymbol{x})$.
- View $\max_i \mu_i^N(\boldsymbol{x})$ as a terminal reward under Bayesian perspective:
 - its expected value depends on a sampling strategy π;
 - we want to maximize this expected reward.
- The objective becomes

$$\max_{\pi} \int_{\mathcal{X}} \mathbb{E}^{\pi} \left[\max_{1 \leq i \leq M} \mu_i^N(\boldsymbol{x}) \right] \gamma(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}.$$

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●●●○	00		O
Integrate	d Knowledge	e Gradient		

• Let (a^n, \boldsymbol{v}^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location \boldsymbol{v}^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random state after the *n*-th sample.

Introduction Formulation Asymptotics Numerical Experiments Conclusions o

Integrated Knowledge Gradient

- Let (a^n, v^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location v^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random *state* after the *n*-th sample.
- If N = 1, the optimal strategy is

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^1(\boldsymbol{v}) \, \Big| \, S^0, a^1 = i, \boldsymbol{v}^1 = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

Introduction Formulation Asymptotics Numerical Experiments Conclusions o

Integrated Knowledge Gradient

- Let (a^n, v^n) denote the *n*-th sampling decision, i.e., on alternative a^n at location v^n , and $S^n \coloneqq (\mu_1^n, \ldots, \mu_M^n, k_1^n, \ldots, k_M^n)$ the random *state* after the *n*-th sample.
- If N = 1, the optimal strategy is

$$\operatorname*{argmax}_{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}} \int_{\mathcal{X}} \mathbb{E} \left[\left. \max_{1 \leq a \leq M} \mu_a^1(\boldsymbol{v}) \right| S^0, a^1 = i, \boldsymbol{v}^1 = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• Myopic Strategy: Treat each time as if there were only one sample left, and allocate the *n*-th sample according to

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

Intograto	d Knowledge	Cradiant		
Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions

• Recall the myopic strategy:

$$\operatorname*{argmax}_{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	●●●●●	00		O
Integrate	d Knowledge	e Gradient		

• Recall the myopic strategy:

$$\underset{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}}{\operatorname{argmax}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• It is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \le a \le M} \mu_a^n(\boldsymbol{v}) - \underbrace{\max_{1 \le a \le M} \mu_a^{n-1}(\boldsymbol{v})}_{\text{irrelevant to } (i, \boldsymbol{x})} \middle| S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

	hat a waste of 17 and 1 a days. Case d'and							
	•••••							
Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions				

Integrated Knowledge Gradient

• Recall the myopic strategy:

$$\operatorname*{argmax}_{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• It is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) - \underbrace{\max_{1 \leq a \leq M} \mu_a^{n-1}(\boldsymbol{v})}_{\text{irrelevant to } (i, \boldsymbol{x})} \middle| S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathrm{d} \boldsymbol{v}.$$

• It is the expected value of information gained by sampling (i, x), integrated over the domain of covariates.

1				
	•••••			
Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions

Integrated Knowledge Gradient

• Recall the myopic strategy:

$$\operatorname*{argmax}_{1 \leq i \leq M, \boldsymbol{x} \in \mathcal{X}} \int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) \, \Big| \, S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathsf{d} \boldsymbol{v}.$$

• It is equivalent to maximizing

$$\int_{\mathcal{X}} \mathbb{E} \left[\max_{1 \leq a \leq M} \mu_a^n(\boldsymbol{v}) - \underbrace{\max_{1 \leq a \leq M} \mu_a^{n-1}(\boldsymbol{v})}_{\text{irrelevant to } (i, \boldsymbol{x})} \middle| S^{n-1}, a^n = i, \boldsymbol{v}^n = \boldsymbol{x} \right] \gamma(\boldsymbol{v}) \mathrm{d} \boldsymbol{v}.$$

- It is the expected value of information gained by sampling (i, x), integrated over the domain of covariates.
- We always search for (i, x) that maximizes such integrated expected information gain, thus refer it as Integrated Knowledge Gradient (IKG) sampling strategy.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	00	O

2 Formulation

3 Asymptotics

4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	●○		O
Numerica	al Illustration			

0000	00000	•••		0
Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions

Theorem 1

Under some mild assumptions, the IKG sampling strategy is consistent, that is, as $N \to \infty$, for all $x \in \mathcal{X}$,

(i)
$$k_i^N(\boldsymbol{x}, \boldsymbol{x}) \to 0$$
 a.s. for $i = 1, \dots, M$;
(ii) $\mu_i^N(\boldsymbol{x}) \to \theta_i(\boldsymbol{x})$ a.s. for $i = 1, \dots, M$;
(iii) $\operatorname{argmax}_i \mu_i^N(\boldsymbol{x}) \to \operatorname{argmax}_i \theta_i(\boldsymbol{x})$ a.s.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	00	0

2 Formulation

3 Asymptotics

4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	●0	O
Svnthetic	: Problem			

• We consider M = 5 alternatives with mean performance surfaces

$$\theta_i(\boldsymbol{x}) = \sum_{j=1}^d \frac{x_j^2}{4000} - 1.5^{d-1} \prod_{j=1}^d \cos\left(\frac{x_j}{\sqrt{ij}}\right), \quad \boldsymbol{x} \in \mathcal{X} = [0, 10]^d, i = 1, \dots, 5.$$

• Visualization of the 5 surfaces for d=1,2

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	●○	O
Synthetic	: Problem			

• We consider M = 5 alternatives with mean performance surfaces

$$\theta_i(\boldsymbol{x}) = \sum_{j=1}^d \frac{x_j^2}{4000} - 1.5^{d-1} \prod_{j=1}^d \cos\left(\frac{x_j}{\sqrt{ij}}\right), \quad \boldsymbol{x} \in \mathcal{X} = [0, 10]^d, i = 1, \dots, 5.$$

• Visualization of the 5 surfaces for d = 1, 2

• Sampling variance $\lambda_i(x) \equiv 0.01$; Uniformly distributed covariates x.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	●●	O
Results				

• Take prior $\mu_i^0(\boldsymbol{x})\equiv 0$ and $k_i^0(\boldsymbol{x},\boldsymbol{x}')=\exp(-\frac{1}{d}\|\boldsymbol{x}-\boldsymbol{x}'\|^2).$

Estimated Opportunity Cost (vertical) as a function of the Sampling Budget (horizontal)

Haihui Shen

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00	00	O

2 Formulation

3 Asymptotics

4 Numerical Experiments

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		•
Concluding	Remarks			

- We propose an IKG sampling strategy, which is suitable for more general situation.
- We provide a theoretical analysis of the asymptotic behavior of the sampling strategy.
- We propose a SGA algorithm to solve the sampling strategy.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		O
References				

- Frazier, P. I., W. Powell, and S. Dayanik (2008). A knowledge gradient policy for sequential information collection. *SIAM J. Control Optim.* 47(5), 2410-2439.
- L'Ecuyer, P. (1995). Note: On the interchange of derivative and expectation for likelihood ratio derivative estimators. *Manag. Sci.* 41(4), 738-747.
- Pearce, M. and J. Branke (2017). Efficient expected improvement estimation for continuous multiple ranking and selection. In *Proc. 2017 Winter Simulation Conf.*, 2161-2172.
- Ryzhov, I. O. (2016). On the convergence rates of expected improvement methods. *Oper. Res.* 64(6), 1515-1528.

Introduction	Formulation	Asymptotics	Numerical Experiments	Conclusions
0000	00000	00		O

Thank you for your attention!

The full paper is available at https://arxiv.org/abs/1906.05098

Haihui Shen shenhaihui@sjtu.edu.cn

November, 2020

Haihui Shen

Knowledge Gradient for Selection with Covariates @ INFORMS 2020