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Selection of the Best

• Select the best from a finite set of alternatives, whose performances
are unknown and can only be learned by sampling.

• The samples may come from computer simulation or real
experiments.

• E.g., select the best medicine (treatment), advertisement
(recommendation), production line, inventory management, etc.

• Sampling may be expensive (in time and/or money), thereby
budget-constrained.

• Goal: a sampling strategy to learn the performances and identify
the best as efficiently as possible.
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Selection with Covariates

• In many cases, “the best” is not universal but depends on the
covariates (contextual information).

• In the example of personalized medicine, the covariates may be
gender, age, weight, medical history, drug reaction, etc.

• In the example of customized advertisement, the covariates may be
gender, age, location, education, browsing history, etc.

• Goal: a sampling strategy to learn the performance surfaces
(functions) as efficiently as possible.

• With the learned performance surfaces, we can identify the best
alternative once the covariates are given (or observed).
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Knowledge Gradient

• Knowledge Gradient (KG), introduced in Frazier et al. (2008), is a
sequential sampling strategy under Bayesian perspective.

• For selection of the best (without covariates):

• KG-based sampling strategies are widely used;
• the performance is often competitive with or outperforms other

sampling strategies (Ryzhov 2016).

• For selection of the best with covariates:

• KG-based sampling strategies are emerging (Pearce and Branke
2017);

• the theory is not complete yet, e.g., no theoretical analysis of the
asymptotic behavior of such strategies.
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What We Did?

• In this research, we

• propose a sampling strategy based on the integrated KG, which is
suitable for more general situation;

• provide a theoretical analysis of the asymptotic behavior of the
sampling strategy;

• propose a stochastic gradient ascent (SGA) algorithm to solve the
sampling strategy.

Pearce and Branke (2017) Our Work

Sampling Noise homoscedastic can be heteroscedastic
Sampling Cost constant can be different

Asymptotic Analysis numerical theoretical
To Solve sample average approximation SGA
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Setting

• M competing alternatives with unknown performance surface θi(x),
i = 1, . . . ,M .

• The covariates x = (x1, . . . , xd)
ᵀ ∈ X ⊂ Rd has density γ(x).

• We want to learn offline: argmax1≤i≤M θi(x), for x ∈ X .

• For simplification purpose, in this presentation we just consider the
constant sampling cost (≡ 1), which is not necessary.

• The budget is N samples.

• Sample on alternative i at location x has independent normal
distribution with unknown mean θi(x) and known variance λi(x).

• We need a good strategy to guide the sampling decision (on which
alternative and at what location) until the N samples are taken.
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Bayesian Perspective

• Assign prior for {θ1(x), . . . , θM (x)}, under which θi(x)’s are
independent Gaussian processes with:

• mean function µ0
i (x) := E[θi(x)|F0];

• covariance function k0i (x,x
′) := Cov[θi(x), θi(x

′)|F0].

• After n samples, {θ1(x), . . . , θM (x)} are still independent Gaussian
processes under the posterior with:

• mean function µn
i (x) := E[θi(x)|Fn];

• covariance function kni (x,x
′) := Cov[θi(x), θi(x

′)|Fn].

• µni (x) is used as our estimator (or predictor) of θi(x), and kni (x,x)
characterizes the uncertainty at θi(x).

• Updating Equation: if the n-th sample y is taken on i at v, then

µn
i (x) = µn−1

i (x) + kn−1
i (x,v)[kn−1

i (v,v) + λi(v)]
−1[y − µn−1

i (v)],

kni (x,x
′) = kn−1

i (x,x′)− kn−1
i (x,v)[kn−1

i (v,v) + λi(v)]
−1kn−1

i (v,x′).
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Objective of Sampling Strategy

• After N samples, we will estimate argmax1≤i≤M θi(x) via

argmax1≤i≤M µNi (x).

• View maxi µ
N
i (x) as a terminal reward under Bayesian perspective:

• its expected value depends on a sampling strategy π;
• we want to maximize this expected reward.

• The objective becomes

max
π

∫
X
Eπ

[
max

1≤i≤M
µNi (x)

]
γ(x)dx.
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Integrated Knowledge Gradient

• Let (an,vn) denote the n-th sampling decision, i.e., on alternative
an at location vn, and Sn := (µn1 , . . . , µ

n
M , k

n
1 , . . . , k

n
M ) the random

state after the n-th sample.

• If N = 1, the optimal strategy is

argmax
1≤i≤M,x∈X

∫
X
E
[

max
1≤a≤M

µ1
a(v)

∣∣∣S0, a1 = i,v1 = x
]
γ(v)dv.

• Myopic Strategy: Treat each time as if there were only one sample
left, and allocate the n-th sample according to

argmax
1≤i≤M,x∈X

∫
X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]
γ(v)dv.
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Integrated Knowledge Gradient

• Recall the myopic strategy:

argmax
1≤i≤M,x∈X

∫
X
E
[

max
1≤a≤M

µn
a(v)

∣∣∣Sn−1, an = i,vn = x
]
γ(v)dv.

• It is equivalent to maximizing∫
X
E
[

max
1≤a≤M

µn
a(v)− max

1≤a≤M
µn−1
a (v)︸ ︷︷ ︸

irrelevant to (i,x)

∣∣∣Sn−1, an = i,vn = x

]
γ(v)dv.

• It is the expected value of information gained by sampling (i,x),
integrated over the domain of covariates.

• We always search for (i,x) that maximizes such integrated expected
information gain, thus refer it as Integrated Knowledge Gradient
(IKG) sampling strategy.
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Numerical Illustration
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Theoretical Result

Theorem 1

Under some mild assumptions, the IKG sampling strategy is consistent,
that is, as N →∞, for all x ∈ X ,

(i) kNi (x,x)→ 0 a.s. for i = 1, . . . ,M ;

(ii) µNi (x)→ θi(x) a.s. for i = 1, . . . ,M ;

(iii) argmaxi µ
N
i (x)→ argmaxi θi(x) a.s.
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Synthetic Problem

• We consider M = 5 alternatives with mean performance surfaces

θi(x) =

d∑
j=1

x2j
4000

−1.5d−1
d∏

j=1

cos
( xj√

ij

)
, x ∈ X = [0, 10]d, i = 1, . . . , 5.

• Visualization of the 5 surfaces for d = 1, 2

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

• Sampling variance λi(x) ≡ 0.01; Uniformly distributed covariates x.
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Results

• Take prior µ0
i (x) ≡ 0 and k0i (x,x

′) = exp(− 1
d‖x− x′‖2).

30 Zhang et al.: Knowledge Gradient for Selection with Covariates: Consistency and Computation

Figure 1: Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis)
for P1.
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Figure 2: Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis)
for P2.
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Concluding Remarks

• We propose an IKG sampling strategy, which is suitable for more
general situation.

• We provide a theoretical analysis of the asymptotic behavior of the
sampling strategy.

• We propose a SGA algorithm to solve the sampling strategy.
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Thank you for your attention!

The full paper is available at https://arxiv.org/abs/1906.05098
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