Gaussian Process Based Random Search for Continuous Optimization via Simulation

Haihui Shen (沈海辉)

Sino-US Global Logistics Institute Shanghai Jiao Tong University

Joint work with Xiuxian Wang (SJTU), Jeff Hong (Fudan), and Zhibin Jiang (SJTU)

@ 第十八届管理科学与工程学会协同创新与管理分会 安徽 合肥

2023年7月19–21日

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

- [Implementation](#page-36-0)
- [Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

- [Implementation](#page-36-0)
- [Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

Optimization via Simulation (OvS)

$$
\max_{\bm{x}\in\mathcal{X}}\;g(\bm{x}).
$$

- The form of $q(x)$ is unknown to us;
- $q(x)$ can only be evaluated via noisy simulation observation $G(\boldsymbol{x}; \omega)$ such that $g(\boldsymbol{x}) = \mathbb{E}[G(\boldsymbol{x}; \omega)]$;
- ω represents the randomness of simulation experiments;
- It is a black-box optimization with random noises.

Optimization via Simulation (OvS)

$$
\max_{\bm{x}\in\mathcal{X}}\;g(\bm{x}).
$$

- The form of $q(x)$ is unknown to us;
- $q(x)$ can only be evaluated via noisy simulation observation $G(\boldsymbol{x}; \omega)$ such that $g(\boldsymbol{x}) = \mathbb{E}[G(\boldsymbol{x}; \omega)]$;
- ω represents the randomness of simulation experiments;
- It is a black-box optimization with random noises.
- When x takes continuous or discrete values in \mathcal{X} , the problem is called continuous OvS (COvS) or discrete OvS (DOvS).

Optimization via Simulation (OvS)

$$
\max_{\bm{x}\in\mathcal{X}}\;g(\bm{x}).
$$

- The form of $q(x)$ is unknown to us;
- $q(x)$ can only be evaluated via noisy simulation observation $G(\boldsymbol{x}; \omega)$ such that $g(\boldsymbol{x}) = \mathbb{E}[G(\boldsymbol{x}; \omega)]$;
- ω represents the randomness of simulation experiments;
- It is a black-box optimization with random noises.
- When x takes continuous or discrete values in \mathcal{X} , the problem is called continuous OvS (COvS) or discrete OvS (DOvS).

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)

Optimization via Simulation (OvS)

$$
\max_{\bm{x}\in\mathcal{X}}\;g(\bm{x}).
$$

- The form of $q(x)$ is unknown to us;
- $q(x)$ can only be evaluated via noisy simulation observation $G(\boldsymbol{x}; \omega)$ such that $g(\boldsymbol{x}) = \mathbb{E}[G(\boldsymbol{x}; \omega)]$;
- ω represents the randomness of simulation experiments;
- It is a black-box optimization with random noises.
- When x takes continuous or discrete values in \mathcal{X} , the problem is called continuous OvS (COvS) or discrete OvS (DOvS).
- Examples of COvS:
	- Traffic signal optimization to optimize the expected throughput of a transportation hub;
	- Parameter tuning in machine learning.

• Random search is an important category of algorithms to solve OvS problems.

Random Search

- Random search is an important category of algorithms to solve OvS problems.
- The key of a random search algorithm is to handle three "E":
	- Exploration: Search globally in the entire domain;
	- Exploitation: Search locally near the current optimum;
	- Estimation: Estimate objective function values based on noisy simulation observations.

- Random search is an important category of algorithms to solve OvS problems.
- The key of a random search algorithm is to handle three "E":
	- Exploration: Search globally in the entire domain;
	- Exploitation: Search locally near the current optimum;
	- Estimation: Estimate objective function values based on noisy simulation observations.
- The first two E's are tackled by the sampling distribution.

- Random Search
	- Random search is an important category of algorithms to solve OvS problems.
	- The key of a random search algorithm is to handle three "E":
		- Exploration: Search globally in the entire domain;
		- Exploitation: Search locally near the current optimum;
		- Estimation: Estimate objective function values based on noisy simulation observations.
	- The first two E's are tackled by the sampling distribution.
	- Estimation can be conducted using
		- the multi-observation approach;
		- the single-observation approach.

- Random search is an important category of algorithms to solve OvS problems.
	- The key of a random search algorithm is to handle three "E":
		- Exploration: Search globally in the entire domain;
		- Exploitation: Search locally near the current optimum;
		- Estimation: Estimate objective function values based on noisy simulation observations.
	- The first two E's are tackled by the sampling distribution.
	- Estimation can be conducted using
		- the multi-observation approach;
			- repeatedly sample the same solution
			- convergence due to the Strong Law of Large Numbers
		- the single-observation approach.

Random Search

- Random search is an important category of algorithms to solve OvS problems.
- The key of a random search algorithm is to handle three "E":
	- Exploration: Search globally in the entire domain;
	- Exploitation: Search locally near the current optimum;
	- Estimation: Estimate objective function values based on noisy simulation observations.
- The first two E's are tackled by the sampling distribution.
- Estimation can be conducted using
	- the multi-observation approach;
		- repeatedly sample the same solution
		- convergence due to the Strong Law of Large Numbers
	- the single-observation approach.
		- sample each solution only once
		- k -nearest neighbor / shrinking-ball mechanism

- Random search is an important category of algorithms to solve OvS problems.
	- The key of a random search algorithm is to handle three "E":
		- Exploration: Search globally in the entire domain;
		- Exploitation: Search locally near the current optimum;
		- Estimation: Estimate objective function values based on noisy simulation observations.
	- The first two E's are tackled by the sampling distribution.
	- Estimation can be conducted using
		- the multi-observation approach;
			- repeatedly sample the same solution
			- convergence due to the Strong Law of Large Numbers
		- the single-observation approach. (preferable for COvS)
			- sample each solution only once
			- $-$ k-nearest neighbor / shrinking-ball mechanism

ト海さる

- It takes a Bayesian viewpoint.
- Suppose the unknown $g(x)$ is a (random) sample path of a Gaussian process f_{GP} on X, with
	- mean function $\mu_0 : \mathcal{X} \to \mathbb{R}$, defined by

$$
\mu_0(\boldsymbol{x}) = \mathbb{E}[f_{\mathcal{GP}}(\boldsymbol{x})];
$$

• covariance function $k_0 : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, defined by

 $k_0(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f_{\mathcal{GP}}(\mathbf{x}) - \mu_0(\mathbf{x}))(f_{\mathcal{GP}}(\mathbf{x}') - \mu_0(\mathbf{x}'))].$

- It takes a Bayesian viewpoint.
- Suppose the unknown $g(x)$ is a (random) sample path of a Gaussian process f_{GP} on X, with
	- mean function $\mu_0 : \mathcal{X} \to \mathbb{R}$, defined by

$$
\mu_0(\boldsymbol{x}) = \mathbb{E}[f_{\mathcal{GP}}(\boldsymbol{x})];
$$

• covariance function $k_0 : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, defined by

$$
k_0(\boldsymbol{x},\boldsymbol{x}') = \mathbb{E}[(f_{\mathcal{GP}}(\boldsymbol{x}) - \mu_0(\boldsymbol{x}))(f_{\mathcal{GP}}(\boldsymbol{x}') - \mu_0(\boldsymbol{x}'))].
$$

• For any $x, g(x) \sim \mathcal{N}(\mu_0(x), k_0(x, x))$ (prior distribution).

- It takes a Bayesian viewpoint.
- Suppose the unknown $g(x)$ is a (random) sample path of a Gaussian process f_{GP} on X, with
	- mean function $\mu_0 : \mathcal{X} \to \mathbb{R}$, defined by

$$
\mu_0(\boldsymbol{x}) = \mathbb{E}[f_{\mathcal{GP}}(\boldsymbol{x})];
$$

• covariance function $k_0 : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, defined by

$$
k_0(\boldsymbol{x},\boldsymbol{x}') = \mathbb{E}[(f_{\mathcal{GP}}(\boldsymbol{x}) - \mu_0(\boldsymbol{x}))(f_{\mathcal{GP}}(\boldsymbol{x}') - \mu_0(\boldsymbol{x}'))].
$$

- For any $x, q(x) \sim \mathcal{N}(\mu_0(x), k_0(x, x))$ (prior distribution).
- \bullet After running simulation at $\boldsymbol{X}^n = \{\boldsymbol{x}_i\}_{i=1}^n$ with observations $\boldsymbol{G}^n = (G(\boldsymbol{x}_1), \dots, G(\boldsymbol{x}_n))^\mathsf{T}$, how to predict $g(\boldsymbol{x})$? 上海京涌

• Assume $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}), \lambda^2(\boldsymbol{x})).$

- Assume $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}), \lambda^2(\boldsymbol{x})).$
- For any x ,

$$
g(\boldsymbol{x})|\{\boldsymbol{X}^n,\boldsymbol{G}^n\}\sim\mathcal{N}(\mu_n(\boldsymbol{x}),k_n(\boldsymbol{x},\boldsymbol{x})),
$$

$$
\mu_n(\boldsymbol{x}) \coloneqq \mu_0(\boldsymbol{x}) + k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} [\boldsymbol{G}^n - \mu_0(\boldsymbol{X}^n)],
$$

$$
k_n(\boldsymbol{x}, \boldsymbol{x}) \coloneqq k_0(\boldsymbol{x}, \boldsymbol{x}) - k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} k_0(\boldsymbol{X}^n, \boldsymbol{x}),
$$

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)

Gaussian Process Regression

- Assume $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}), \lambda^2(\boldsymbol{x})).$
- For any x ,

$$
g(\boldsymbol{x})|\{\boldsymbol{X}^n,\boldsymbol{G}^n\}\sim\mathcal{N}(\mu_n(\boldsymbol{x}),k_n(\boldsymbol{x},\boldsymbol{x})),
$$

$$
\mu_n(\boldsymbol{x}) \coloneqq \mu_0(\boldsymbol{x}) + k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} [\boldsymbol{G}^n - \mu_0(\boldsymbol{X}^n)],
$$

$$
k_n(\boldsymbol{x}, \boldsymbol{x}) \coloneqq k_0(\boldsymbol{x}, \boldsymbol{x}) - k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} k_0(\boldsymbol{X}^n, \boldsymbol{x}),
$$

where

\n- \n
$$
\mathbf{\Sigma}^n = \text{diag}(\lambda^2(\mathbf{x}_i), \ldots, \lambda^2(\mathbf{x}_n));
$$
\n
\n- \n $k_0(\mathbf{X}^n, \mathbf{X}^n) = [k_0(\mathbf{x}_i - \mathbf{x}_j)]_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n};$ \n
\n- \n $k_0(\mathbf{x}, \mathbf{X}^n) = (k_0(\mathbf{x} - \mathbf{x}_1), \ldots, k_0(\mathbf{x} - \mathbf{x}_n)) \in \mathbb{R}^{1 \times n};$ \n
\n- \n $k_0(\mathbf{X}^n, \mathbf{x}) = k_0(\mathbf{x}, \mathbf{X}^n)^\mathsf{T}.$ \n
\n

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)

Gaussian Process Regression

- Assume $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}), \lambda^2(\boldsymbol{x})).$
- For any x ,

$$
g(\boldsymbol{x})|\{\boldsymbol{X}^n,\boldsymbol{G}^n\}\sim\mathcal{N}(\mu_n(\boldsymbol{x}),k_n(\boldsymbol{x},\boldsymbol{x})),
$$

$$
\mu_n(\boldsymbol{x}) \coloneqq \mu_0(\boldsymbol{x}) + k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} [\boldsymbol{G}^n - \mu_0(\boldsymbol{X}^n)],
$$

$$
k_n(\boldsymbol{x}, \boldsymbol{x}) \coloneqq k_0(\boldsymbol{x}, \boldsymbol{x}) - k_0(\boldsymbol{x}, \boldsymbol{X}^n) [k_0(\boldsymbol{X}^n, \boldsymbol{X}^n) + \boldsymbol{\Sigma}^n]^{-1} k_0(\boldsymbol{X}^n, \boldsymbol{x}),
$$

where

\n- \n
$$
\mathbf{\Sigma}^n = \text{diag}(\lambda^2(\mathbf{x}_i), \ldots, \lambda^2(\mathbf{x}_n));
$$
\n
\n- \n $k_0(\mathbf{X}^n, \mathbf{X}^n) = [k_0(\mathbf{x}_i - \mathbf{x}_j)]_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n};$ \n
\n- \n $k_0(\mathbf{x}, \mathbf{X}^n) = (k_0(\mathbf{x} - \mathbf{x}_1), \ldots, k_0(\mathbf{x} - \mathbf{x}_n)) \in \mathbb{R}^{1 \times n};$ \n
\n- \n $k_0(\mathbf{X}^n, \mathbf{x}) = k_0(\mathbf{x}, \mathbf{X}^n)^\mathsf{T}.$ \n
\n

 $\bullet\,$ Usually, use $\mu_n({\boldsymbol x})$ to predict $g({\boldsymbol x})|\{{\boldsymbol X}^n,{\boldsymbol G}^n\},$ and use $k_n(x, x)$ to quantify the uncertainty.

沈海辉 Gaussian Process Based Random Search © 协同创新与管理分会 2023 6 / 25

上海文百大學

- An illustration:
	- $d = 1, \mathcal{X} = [0, 1];$
	- $\mu_0(x) \equiv 0$, $k_0(x, x') = 1.5 \times e^{-100(x x')^2}$;
	- $G(x)|g(x) \sim \mathcal{N}(g(x), 0.5^2);$
	- ${x_i}_{i=1}^n$ is generated from $\text{uniform}[0, 1]$.

0 sample taken (n=0)

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

[Implementation](#page-36-0)

[Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

Exploration, Exploitation, Estimation

• Recall the Gaussian process regression

9 samples taken (n=9)

 \bullet It provides a natural way to handle the three "E".

[Introduction](#page-2-0) **[Gaussian Process Based Random Search](#page-22-0)** [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 **100** 0000 000 000 Sampling Distribution

• Construct $f_n(\boldsymbol{x}) = \frac{\mathbb{P}\{Z(\boldsymbol{x}) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(\boldsymbol{z}) > c\} \text{d}\boldsymbol{z}}, \,\, \boldsymbol{x} \in \mathcal{X},$ where

•
$$
c = \max_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x});
$$

•
$$
Z(\mathbf{x}) \sim \mathcal{N}(\mu_n(\mathbf{x}), k_n(\mathbf{x}, \mathbf{x})).
$$

Sampling Distribution

[Introduction](#page-2-0) **[Gaussian Process Based Random Search](#page-22-0)** [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 **100** 0000 000 000 Sampling Distribution

• Construct $f_n(\boldsymbol{x}) = \frac{\mathbb{P}\{Z(\boldsymbol{x}) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(\boldsymbol{z}) > c\} \text{d}\boldsymbol{z}}, \,\, \boldsymbol{x} \in \mathcal{X},$ where

•
$$
c = \max_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x});
$$

•
$$
Z(\mathbf{x}) \sim \mathcal{N}(\mu_n(\mathbf{x}), k_n(\mathbf{x}, \mathbf{x})).
$$

• It is a straightforward extension of the proposed sampling distribution in Sun et al. $(2014,\,\mathsf{OR})^\dagger.$

沈海辉 [Gaussian Process Based Random Search @](#page-0-0) 协同创新与管理分会 2023 10 / 25

[†]
Sun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in discrete optimization via simulation through a Gaussian process-based search. Operations Research 62(6):1416–1438.

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0) Sampling Distribution

• Construct $f_n(\boldsymbol{x}) = \frac{\mathbb{P}\{Z(\boldsymbol{x}) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(\boldsymbol{z}) > c\} \text{d}\boldsymbol{z}}, \,\, \boldsymbol{x} \in \mathcal{X},$ where

•
$$
c = \max_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x});
$$

- $Z(\boldsymbol{x}) \sim \mathcal{N}(\mu_n(\boldsymbol{x}), k_n(\boldsymbol{x}, \boldsymbol{x})).$
- It is a straightforward extension of the proposed sampling distribution in Sun et al. $(2014,\,\mathsf{OR})^\dagger.$
- However.
	- Sun et al. (2014, OR) considers DOvS problems.
	- The Gaussian process regression is only used for constructing sampling distribution, so a fast approximation (instead of the original form) is adopted.
	- Estimation is achieved with the multi-observation approach.

[†]
Sun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in discrete optimization via simulation through a Gaussian process-based search. Operations Research 62(6):1416–1438.

Step 0 (Initialization). Impose a Gaussian process with μ_0 and k_0 . Specify a $r > 0$. Set $s = 0$, $n = 0$, $X^0 = \emptyset$ and $G^0 = \emptyset$. and sampling distribution $f_0(x)$.

Step 1 (Sampling). Set $s = s + 1$. Sample $x_{r(s-1)+1}, \ldots, x_{rs}$ independently from $f_n(x)$, and obtain simulation observations $G(\boldsymbol{x}_{r(s-1)+1}), \ldots, G(\boldsymbol{x}_{rs}).$

Step 2 (Calculation). Set $n = rs$. Let $X^n = X^{r(s-1)} \cup \{x_{r(s-1)+1}, \ldots, x_1\}$ $\left(\boldsymbol{x}_{rs}\right)^{'}$ and $\boldsymbol{G}^{n}=\left(\left[\boldsymbol{G}^{r(s-1)}\right]^\intercal,\boldsymbol{G}(\boldsymbol{x}_{r(s-1)+1}),\ldots,\boldsymbol{G}(\boldsymbol{x}_{rs})\right)^\intercal.$ Calculate $\mu_n(\bm{x})$ and $k_n(\bm{x}, \bm{x})$. Let $\bm{x}_n^* = \arg\!\max_{\bm{x} \in \mathcal{X}} \mu_n(\bm{x})$. Construct sampling distribution $f_n(x)$.

Step 3 (Stopping). If the stopping condition is not met, go to Step 1; otherwise, stop and output \boldsymbol{x}_n^* and $\mu_n(\boldsymbol{x}_n^*).$

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

- [Implementation](#page-36-0)
- [Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

- The convergence analysis is for a general framework of Gaussian process based random search algorithms for COvS problems.
- More specifically, it only requires that the constructed sampling distribution $f_n(x)$ is lower bounded.
	- Not necessary to utilize the information contained in $\mu_n(x)$ and $k_n(\boldsymbol{x}, \boldsymbol{x})$;
	- Can be either static or dynamic.

- Assumptions:
	- A1. [feasible region] $\mathcal X$ is a compact set in $\mathbb R^d$, and $\mathsf{cl}(\mathsf{int}(\mathcal X))=\mathcal X.$
	- A2. [simulation noise] $G(\bm{x})|g(\bm{x}) \sim \mathcal{N}(g(\bm{x}),\lambda^2(\bm{x}))$, and $\lambda^2(\bm{x})$ is bounded on X .
	- A3. $[g(x) \& GP] g(x)$ is a sample path of a Gaussian process, whose $\mu_0(\bm{x})$ is continuous and $k_0(\bm{x},\bm{x}')$ satisfies certain regularity conditions.
	- A4. [sampling distribution] $f_n(x) \geq \alpha$ for all n and $x \in \mathcal{X}$.

- Assumptions:
	- A1. [feasible region] $\mathcal X$ is a compact set in $\mathbb R^d$, and $\mathsf{cl}(\mathsf{int}(\mathcal X))=\mathcal X.$
	- A2. [simulation noise] $G(\bm{x})|g(\bm{x}) \sim \mathcal{N}(g(\bm{x}),\lambda^2(\bm{x}))$, and $\lambda^2(\bm{x})$ is bounded on X .
	- A3. $[g(x) \& GP] g(x)$ is a sample path of a Gaussian process, whose $\mu_0(\bm{x})$ is continuous and $k_0(\bm{x},\bm{x}')$ satisfies certain regularity conditions.
	- A4. [sampling distribution] $f_n(x) \geq \alpha$ for all n and $x \in \mathcal{X}$.
- Extra notations:
	- $g^* = \max_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x});$
	- $\mathcal{X}^* = \operatorname{argmax}_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x});$
	- $d(\boldsymbol{x}, \mathcal{A}) = \inf_{\boldsymbol{x}' \in \mathcal{A}} ||\boldsymbol{x} \boldsymbol{x}'||.$

- Assumptions:
	- A1. [feasible region] $\mathcal X$ is a compact set in $\mathbb R^d$, and $\mathsf{cl}(\mathsf{int}(\mathcal X))=\mathcal X.$
	- A2. [simulation noise] $G(\bm{x})|g(\bm{x}) \sim \mathcal{N}(g(\bm{x}),\lambda^2(\bm{x}))$, and $\lambda^2(\bm{x})$ is bounded on X .
	- A3. $[g(x) \& GP] g(x)$ is a sample path of a Gaussian process, whose $\mu_0(\bm{x})$ is continuous and $k_0(\bm{x},\bm{x}')$ satisfies certain regularity conditions.
	- A4. [sampling distribution] $f_n(x) \geq \alpha$ for all n and $x \in \mathcal{X}$.
- Extra notations:
	- $g^* = \max_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x});$
	- $\mathcal{X}^* = \operatorname{argmax}_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x});$
	- $d(\boldsymbol{x}, \mathcal{A}) = \inf_{\boldsymbol{x}' \in \mathcal{A}} ||\boldsymbol{x} \boldsymbol{x}'||.$
- Main result:

Theorem 1. $\mu_n(\bm{x}_n^*) \to g^*$ and $d(\bm{x}_n^*, \mathcal{X}^*) \to 0$ almost surely as $n \to \infty$.

- Assumptions:
	- A1'. [feasible region] $\mathcal{X} \subset \mathbb{R}^d$ is a bounded convex set with nonempty interior.
	- A2. [simulation noise] $G(\bm{x})|g(\bm{x}) \sim \mathcal{N}(g(\bm{x}),\lambda^2(\bm{x}))$, and $\lambda^2(\bm{x})$ is bounded on X .
	- A3'. $[g(x) \& GP] g(x)$ is a sample path of a Gaussian process f_{GP} , and the first-order derivatives of f_{GP} are stationary Gaussian processes with almost-sure continuous sample paths.
	- A4. [sampling distribution] $f_n(x) \geq \alpha$ for all n and $x \in \mathcal{X}$.

- Assumptions:
	- A1'. [feasible region] $\mathcal{X} \subset \mathbb{R}^d$ is a bounded convex set with nonempty interior.
	- A2. [simulation noise] $G(\bm{x})|g(\bm{x}) \sim \mathcal{N}(g(\bm{x}),\lambda^2(\bm{x}))$, and $\lambda^2(\bm{x})$ is bounded on X .
	- A3'. $[g(x) \& GP] g(x)$ is a sample path of a Gaussian process f_{GP} , and the first-order derivatives of f_{GP} are stationary Gaussian processes with almost-sure continuous sample paths.
	- A4. [sampling distribution] $f_n(x) \geq \alpha$ for all n and $x \in \mathcal{X}$.
- Main result:

Theorem 2. There exists a constant
$$
C_0 > 0
$$
 such that, as $n \to \infty$,

\n
$$
\mathbb{P}\left\{|\mu_n(x_n^*) - g^*| > \left(\frac{16C_0\log n}{n^{\kappa(n)}}\right)^{1/2}\right\} \to 0, \text{ where } \kappa(n) = \frac{2}{d+2}
$$
\n
$$
-\frac{b\log\log n}{\log n}. \text{ That is, the rate of convergence is } \widetilde{O}_p(n^{-1/(d+2)}).
$$
\n
$$
\text{This is, the rate of the following property:}
$$

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

[Implementation](#page-36-0)

[Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) **[Implementation](#page-36-0)** [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 000 000 000 000 000

Estimation of $\lambda^2(\bm{x})$ and GP Parameters

- If the simulation noises are homoscedastic, i.e., $\lambda^2(\boldsymbol{x}) \equiv \lambda^2 \boldsymbol{x}$
	- Estimate λ^2 , together with GP parameters, using MLE method.
	- Only estimate these parameters once, to alleviate the computational burden.

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 000 000 00 nnnnr

Estimation of $\lambda^2(\bm{x})$ and GP Parameters

- If the simulation noises are homoscedastic, i.e., $\lambda^2(\boldsymbol{x}) \equiv \lambda^2 \boldsymbol{x}$
	- Estimate λ^2 , together with GP parameters, using MLE method.
	- Only estimate these parameters once, to alleviate the computational burden.
- If the simulation noises are heteroscedastic:
	- To deal with the situation that only single observation is available on each sampled point, a kernel-based sample variance estimator is adopted to estimate $\{\lambda^2(\boldsymbol{x}_i)\}_{i=1}^n$.
	- GP parameters are estimated using MLE method after the variances are estimated.
	- GP parameters are estimated only once, while $\{\lambda^2(\pmb{x}_i)\}_{i=1}^n$ are updated repeatedly when new observations are obtained.

上海文百大學

Sampling from the Sampling Distribution

• Recall the sampling distribution $f_n(x) = \frac{\mathbb{P}\{Z(x) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(z) > c\} \text{d}z}$.

Sampling from the Sampling Distribution

- Recall the sampling distribution $f_n(x) = \frac{\mathbb{P}\{Z(x) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(z) > c\} \text{d}z}$.
- Acceptance-Rejection Sampling Scheme (exact): S1. Generate y from uniform (X) and u from uniform [0, 1].
	- S2. If $u \leq 2 \mathbb{P}{Z(y) > c}$, return y; otherwise, go to S1.

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 000 000 000 000 000 000 000

Sampling from the Sampling Distribution

- Recall the sampling distribution $f_n(x) = \frac{\mathbb{P}\{Z(x) > c\}}{\int_{\mathcal{X}} \mathbb{P}\{Z(z) > c\} \text{d}z}$.
- Acceptance-Rejection Sampling Scheme (exact): S1. Generate y from uniform (X) and u from uniform [0, 1]. S2. If $u \leq 2 \mathbb{P}{Z(y) > c}$, return y; otherwise, go to S1.
- Markov Chain Coordinate Sampling Scheme (approximate):
	- S0. Specify iteration number T. Let $t = 0$, $y = y_0$.
	- S1. Let $t = t + 1$. Generate j uniformly from $\{1, \ldots, d\}$. Let $l(\boldsymbol{y}, j)$ be the line that passes through \boldsymbol{y} and parallel to the y_j coordinate axis. Sample a point on $l(\mathbf{y}, j) \cap \mathcal{X}$ uniformly, whose j-th coordinate is denoted as b. Set $z = y$ and $z_j = b$. S2. Generate u from uniform [0, 1]. If $u \leq \frac{\mathbb{P}\{Z(z) > c\}}{\mathbb{P}\{Z(u) > c\}}$ $\frac{\mathbb{P}\{Z(\boldsymbol{z}) > c\}}{\mathbb{P}\{Z(\boldsymbol{y}) > c\}},$ set $\boldsymbol{y} = \boldsymbol{z}$.
	- S2. If $t = T$, return y ; otherwise, go to S1.

Solving $\boldsymbol{x}_n^* = \mathop{\mathrm{argmax}}_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x})$ in Each Iteration

• It requires not only for outputting the current solution in each iteration, but also for constructing sampling distribution in each iteration (key reason).

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 000 000 000 000 000 000 000 nnnnr

Solving $\boldsymbol{x}_n^* = \mathop{\mathrm{argmax}}_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x})$ in Each Iteration

- It requires not only for outputting the current solution in each iteration, but also for constructing sampling distribution in each iteration (key reason).
- Numerical methods:
	- When the dimension is low, simply evaluate $\mu_n(x)$ on a dense grid within X .
	- When the dimension is high, compute $\hat{x}_n^\dagger = \mathbb{\textrm{argmax}}_{\bm{x} \in \bm{X}^n} \, \mu_n(\bm{x}),$ and use some nonlinear optimization solvers with \hat{x}_n^{\dagger} as initial solution.

[Introduction](#page-2-0) [Gaussian Process Based Random Search](#page-22-0) [Convergence](#page-29-0) [Implementation](#page-36-0) [Numerical Experiments](#page-45-0) [Remarks](#page-48-0)
00000 000 000 000 000 000 000 000

Solving $\boldsymbol{x}_n^* = \mathop{\mathrm{argmax}}_{\boldsymbol{x} \in \mathcal{X}} \mu_n(\boldsymbol{x})$ in Each Iteration

- It requires not only for outputting the current solution in each iteration, but also for constructing sampling distribution in each iteration (key reason).
- Numerical methods:
	- When the dimension is low, simply evaluate $\mu_n(x)$ on a dense grid within \mathcal{X} .
	- When the dimension is high, compute $\hat{x}_n^\dagger = \mathbb{\textrm{argmax}}_{\bm{x} \in \bm{X}^n} \, \mu_n(\bm{x}),$ and use some nonlinear optimization solvers with \hat{x}_n^{\dagger} as initial solution.
- Revise the original algorithm:
	- Simply use \hat{x}_n^\dagger instead of $x_n^*.$
	- Under Assumption A3', the aforementioned global convergence and rate of convergence still hold.

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

- [Implementation](#page-36-0)
- [Numerical Experiments](#page-45-0)

[Remarks](#page-48-0)

$g(x)$ Generated from GP with Known Parameters

• Setting:

•
$$
d = 2
$$
, $\mathcal{X} = [0, 1]^2$;

•
$$
\mu_0(\mathbf{x}) \equiv 1, k_0(\mathbf{x}, \mathbf{x}') = 4 \times e^{-80||\mathbf{x} - \mathbf{x}'||^2};
$$

 $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}), 0.5^2).$

6

Given and Deterministic $q(x)$

- Setting:
	- $d = 2, \, \mathcal{X} = [0, 100]^2;$ • $g(x) = 10 \cdot \frac{\sin^6(0.05\pi x_1)}{22((x_1 - 90)/50)^2}$ $\frac{\sin^{6}(0.05\pi x_{1})}{2^{2((x_{1}-90)/50)^{2}}} + 10 \cdot \frac{\sin^{6}(0.05\pi x_{2})}{2^{2((x_{2}-90)/50)^{2}}}$ $\frac{\sin (0.03\pi x_2)}{2^{2((x_2-90)/50)^2}};$
	- $G(\boldsymbol{x})|g(\boldsymbol{x}) \sim \mathcal{N}(g(\boldsymbol{x}),\frac{1}{4}g(\boldsymbol{x}))$ (variances treated as unknown).

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 22 / 25 / 25 / 25 / 29

[Introduction](#page-2-0)

[Gaussian Process Based Random Search](#page-22-0)

[Convergence](#page-29-0)

- [Implementation](#page-36-0)
- [Numerical Experiments](#page-45-0)

- We propose a framework of Gaussian process based random search algorithms for COvS problems.
	- It uses Gaussian process regression for estimation (single-observation approach);
	- It allows flexible sampling distribution to balance exploration and exploitation (a good choice is to utilize the Gaussian process regression again);
- For general sampling distributions, the global convergence and rate of convergence are established.
	- By exploring the properties of Gaussian process regression;
	- Some intermediate results and techniques have potential to be applied in other applications of Gaussian process regression.
- Some implementation issues are addressed.

Thank you for your attention!

Haihui Shen (沈海辉) shenhaihui@sjtu.edu.cn

July 20, 2023

沈海辉 [Gaussian Process Based Random Search @](#page-0-0) 协同创新与管理分会 2023 25 / 25 / 25