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Optimization via Simulation (OvS)

e Consider

wey 9@

The form of g(x) is unknown to us;
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e w represents the randomness of simulation experiments;

It is a black-box optimization with random noises.
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The form of g(x) is unknown to us;

g(x) can only be evaluated via noisy simulation observation
G(x; w) such that g(x) = E[G(x; w)];

e w represents the randomness of simulation experiments;

It is a black-box optimization with random noises.

e When x takes continuous or discrete values in X, the problem
is called continuous OvS (COVS) or discrete OvS (DOVS).

e Examples of COvS:

o Traffic signal optimization to optimize the expected
throughput of a transportation hub;
e Parameter tuning in machine learning.
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Random Search

Random search is an important category of algorithms to
solve OvS problems.

The key of a random search algorithm is to handle three “E":

e Exploration: Search globally in the entire domain;

o Exploitation: Search locally near the current optimum;

e Estimation: Estimate objective function values based on noisy
simulation observations.

The first two E's are tackled by the sampling distribution.

Estimation can be conducted using
e the multi-observation approach;

- repeatedly sample the same solution
- convergence due to the Strong Law of Large Numbers

e the single-observation approach. (preferable for COvS)

- sample each solution only once
- k-nearest neighbor / shrinking-ball mechanism

4/25



Introduction
[ 1] Jele]

Gaussian Process Regression

e |t takes a Bayesian viewpoint.

e Suppose the unknown g(x) is a (random) sample path of a
Gaussian process fgp on X', with

e mean function pg : X — R, defined by
po(x) = E[fgp(x)];
e covariance function kg : X x X — R, defined by

ko(z, ') = E[(fgp () — po(@))(for (@) — po(x))].
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e |t takes a Bayesian viewpoint.

e Suppose the unknown g(x) is a (random) sample path of a
Gaussian process fgp on X', with

e mean function pg : X — R, defined by
po(x) = E[fgp(x)];
e covariance function kg : X x X — R, defined by

ko(z, ') = E[(fgp () — po(@))(for (@) — po(x))].

e For any x, g(x) ~ N (uo(x), ko(x, x)) (prior distribution).

e After running simulation at X" = {;}}" ; with observations
G" = (G(x1),...,G(x,))", how to predict g(x)?
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Gaussian Process Regression

e Assume G(z)|g(z) ~ N (g(x), \2(x)).
e For any z,
9(@){ X", G"} ~ N (pn(x), kn(z, x)),

pn(®) = pio (@) + ko(@, X™)[ko(X", X™) + Z"]THG™ — pio(X™)],
kn(, @) = ko(z, ) — ko, X™)[ko(X™, X™) + "] 1 hko(X", x),

where

o 3" = diag(\%(x;), ..., N(x,));

* ko(X", X") = [ko(xi — xj)|1<i,j<n € R™T

o ko(x, X™) = (ko(x — 1), ..., ko(z — x,)) € R*™;
4 k?o(X",iL‘) = ko(QS,X”)T.

e Usually, use p,(x) to predict g(x)|[{X"™, G"}, and use
kn(x, ) to quantify the uncertainty.
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Gaussian Process Regression

e An illustration:
ed=1X=10,1];
o po(z) =0, ko(z, 2') = 1.5 x e~ 100@—2")?,
G(2)|g(x) ~ N(g(x), 0.5%);

o {x;}™ , is generated from uniform[0, 1].

0 sample taken (n=0)

4 2
g(x), unknown [ —— Fa(@, @), quantify uncertainty
e g1, (), predict g(a) 15

| NAN
vV

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1

@B-ﬂﬂ R
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Gaussian Process Based Random Search
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Exploration, Exploitation, Estimation

e Recall the Gaussian process regression

9 samples taken (n=9)

2
), unknown [ Ky (2, @), quantify uncertainty
(@), predict g(z) 15
1
0.5
0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
xT x
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Gaussian Process Based Random Search
000

Sampling Distribution

e Construct f,(x) = IXI;{{ZZ((%'

* ¢ = MaXgex ,U/n(m);

° Z(m) ~ N(,Un(m)r kn(m' .’13))

x € X, where
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Gaussian Process Based Random Search
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Sampling Distribution

9 samples taken (n=9)

2
unknown ‘ ky (2, ), quantify uncertainty

x), predict g(x) 15

1

0.5

0

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x x

6 sampling distribution
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Sampling Distribution

_ _PZ@)>c)
2G>
° ¢c=maXgey ln(T);

© Z(w) ~ N(pin (@), kn (@, )).

e Construct f,(x) x € X, where

e It is a straightforward extension of the proposed sampling
distribution in Sun et al. (2014, OR)T.

TSun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in discrete optimization via simulation
through a Gaussian process-based search. Operations Research 62(6):1416-1438.
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Sampling Distribution

_ _PZ@)>c)
2G>
° ¢c=maXgey ln(T);

© Z(w) ~ N(pin (@), kn (@, )).

e Construct f,(x) x € X, where

e It is a straightforward extension of the proposed sampling
distribution in Sun et al. (2014, OR)T.

e However,

e Sun et al. (2014, OR) considers DOVS problems.

e The Gaussian process regression is only used for constructing
sampling distribution, so a fast approximation (instead of the
original form) is adopted.

e Estimation is achieved with the multi-observation approach.

TSun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in discrete optimization via simulation
through a Gaussian process-based search. Operations Research 62(6):1416-1438.
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The Algorithm

Step 0 (Initialization). Impose a Gaussian process with 1o and kg.
Specifyar >0. Set s=0,n =0, X°=0 and G° = 0,
and sampling distribution fy().

Step 1 (Sampling). Set s = s + 1. Sample @,(s_1)41,- .-, Trs
independently from f,,(x), and obtain simulation
observations G(z,(s—1)41), - -+, G(Trs).

Step 2 (Calculation). Set n = rs. Let X" = X (=D U {Zrs—1)41, -0

.5} and G" = ([G"C DT, G(@p(s1)41), -+, Glars))
Calculate g, () and ky(x, ). Let ), = argmax,c y pn ().
Construct sampling distribution f,(x).

Step 3 (Stopping). If the stopping condition is not met, go to Step 1;
otherwise, stop and output x¥ and pu,(x?).
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Convergence
[ ele}

For A General Framework

e The convergence analysis is for a general framework of

Gaussian process based random search algorithms for COvS
problems.

e More specifically, it only requires that the constructed
sampling distribution f,,(x) is lower bounded.

» Not necessary to utilize the information contained in p, ()
and k,(x, x);
e Can be either static or dynamic.
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Global Convergence

e Assumptions:

Al. [feasible region] X is a compact set in RY, and cl(int(X)) = X.

A2. [simulation noise] G(z)|g(x) ~ N (g(x), \}(z)), and A\%(z) is
bounded on X.

A3. [g(x) & GP] g(x) is a sample path of a Gaussian process,
whose () is continuous and kq(x, ') satisfies certain
regularity conditions.

A4. [sampling distribution] f,,(x) > « for all n and © € X
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Global Convergence

e Assumptions:

Al. [feasible region] X is a compact set in RY, and cl(int(X)) = X.
A2. [simulation noise] G(z)|g(x) ~ N (g(x), \}(z)), and A\%(z) is
bounded on X.

A3. [g(x) & GP] g(x) is a sample path of a Gaussian process,
whose () is continuous and kq(x, ') satisfies certain
regularity conditions.

A4. [sampling distribution] f,,(x) > « for all n and © € X
e Extra notations:

* 9" =maxgex g(x);
o X* = argmangex 0(@)
e d(x, A) =infpcallz—a|.

e Main result:

Theorem 1. pp(x}) — ¢* and d(z), X*) — 0 almost surely as n — occ.
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Rate of Convergence

e Assumptions:

Al'. [feasible region] X C R? is a bounded convex set with
nonempty interior.

A2. [simulation noise] G(x)|g(x) ~ N (g(x), \2(x)), and \?(x) is
bounded on X.
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and the first-order derivatives of fgp are stationary Gaussian
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Rate of Convergence

e Assumptions:

Al'. [feasible region] X C R? is a bounded convex set with
nonempty interior.

A2. [simulation noise] G(x)|g(x) ~ N (g(x), \2(x)), and \?(x) is
bounded on X.

A3'. [g(x) & GP] g(x) is a sample path of a Gaussian process fgp,
and the first-order derivatives of fgp are stationary Gaussian
processes with almost-sure continuous sample paths.

A4. [sampling distribution] f, () > « for all n and x € X.

e Main result:
Theorem 2. There exists a constant Cy > 0 such that, as n — oo,
1/2
16C, log 2
P {|Mn(w:) - g*\ > (W) } — 0, where /i(n) =73

__bloglogn

= . That is, the rate of convergence is O, (n~/(4+2)),
gn
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Estimation of \*(x) and GP Parameters

e If the simulation noises are homoscedastic, i.e., \2(xz) = \%:
o Estimate A2, together with GP parameters, using MLE

method.
e Only estimate these parameters once, to alleviate the

computational burden.
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Estimation of \*(x) and GP Parameters

e If the simulation noises are homoscedastic, i.e., \?(x) = \?:
o Estimate A2, together with GP parameters, using MLE
method.
e Only estimate these parameters once, to alleviate the
computational burden.

e |f the simulation noises are heteroscedastic:

e To deal with the situation that only single observation is
available on each sampled point, a kernel-based sample
variance estimator is adopted to estimate {\?(x;)}™ ;.

o GP parameters are estimated using MLE method after the
variances are estimated.

 GP parameters are estimated only once, while {\?(z;)}7; are

1=
updated repeatedly when new observations are obtained.

17/ 25
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e Recall the sampling distribution f,(x) = %
X
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e Recall the sampling distribution f,(x) = %
X

o Acceptance-Rejection Sampling Scheme (exact):

S1. Generate y from uniform(X) and w from uniform|0, 1].
S2. If u <2P{Z(y) > c}, return y; otherwise, go to S1.

e Markov Chain Coordinate Sampling Scheme (approximate):

SO. Specify iteration number T'. Let t =0, y = yo.

S1. Lett =t+ 1. Generate j uniformly from {1,...,d}. Let
I(y, j) be the line that passes through y and parallel to the y;
coordinate axis. Sample a point on I(y, j) N X uniformly,
whose j-th coordinate is denoted as b. Set z =y and z; = b.

S2. Generate u from uniform[0, 1]. If u < %,

S2. If t =T, return y; otherwise, go to S1.

set y = z.

18 / 25



Implementation
(11}

Solving «} = argmax_.y tn(x) in Each Iteration

e It requires not only for outputting the current solution in each
iteration, but also for constructing sampling distribution in
each iteration (key reason).
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grid within X
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Solving «} = argmax_.y tn(x) in Each Iteration

e It requires not only for outputting the current solution in each
iteration, but also for constructing sampling distribution in
each iteration (key reason).

e Numerical methods:
e When the dimension is low, simply evaluate u,(x) on a dense
grid within X
« When the dimension is high, compute &), = argmax,c xn pin (),
and use some nonlinear optimization solvers with & as initial
solution.

e Revise the original algorithm:
o Simply use & instead of x*.
e Under Assumption A3', the aforementioned global convergence
and rate of convergence still hold.

19/ 25
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Numerical Experiments
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g(x) Generated from GP with Known Parameters

e Setting:
e d=2 X=[0,1)%
® M()((B) =1, k()(:li, m/) = 4 x ¢~ 80llz—=

* G(x)|g(x) ~ N(g(x),0.5%).

/H2'
'

6 1

5 0

4 Et
g

g3 o2
= [=
s

2 3

1 4

5

0 1000 2000 3000 4000 5000 6000 &2 e’ e e
Total sample size Total sample size
(a) The optimality gap (b) The rate of convergence
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Numerical Experiments
(1]

Given and Deterministic g(x)

e Setting:
e d=2, X =[0,100]2;

. 6 ;6
o sin® (0.057x1) sin® (0.057zs) |
° g(w) =10- 22((x1—90)/50)2 +10- 22((x2—90)/50)2 !

* G(z)|g(x) ~ N(g(x), Lg(x)) (variances treated as unknown).

(b) ASR algorithm

(c) THR-SO algorithm (d) AP-SO al

gorithm
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Remarks
[ ]

Concluding Remarks

e We propose a framework of Gaussian process based random
search algorithms for COvS problems.
e It uses Gaussian process regression for estimation
(single-observation approach);
e |t allows flexible sampling distribution to balance exploration
and exploitation (a good choice is to utilize the Gaussian
process regression again);

e For general sampling distributions, the global convergence and
rate of convergence are established.

e By exploring the properties of Gaussian process regression;
e Some intermediate results and techniques have potential to be
applied in other applications of Gaussian process regression.

e Some implementation issues are addressed.
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Thank you for your attention!

Haihui Shen GILiE#E)
shenhaihui@sjtu.edu.cn

July 20, 2023
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