
Gaussian Process Based Random Search for
Continuous Optimization via Simulation

Haihui Shen（沈海辉）

Sino-US Global Logistics Institute
Shanghai Jiao Tong University

Joint work with Xiuxian Wang (SJTU), Jeff Hong (Fudan), and Zhibin Jiang (SJTU)

@ 第十八届管理科学与工程学会协同创新与管理分会

安徽 合肥

2023年7月19–21日

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue

 董浩云航运与物流研究院
 CY TUNG Institute of Maritime and Logistics

中美物流研究院
 Sino-US Global Logistics Institute

blue

董浩云智能制造与服务管理研究院
CY TUNG Institute of Intelligent Manufacturing and Service Management

(中美物流研究院）
(Sino-US Global Logistics Institute)

Made by SHEN Haihuiblue

https://www.sjtu.edu.cn/
http://www.sugli.sjtu.edu.cn/


Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Contents

1 Introduction

2 Gaussian Process Based Random Search

3 Convergence

4 Implementation

5 Numerical Experiments

6 Remarks

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 1 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

1 Introduction

2 Gaussian Process Based Random Search

3 Convergence

4 Implementation

5 Numerical Experiments

6 Remarks

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 2 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Optimization via Simulation (OvS)

• Consider
max
x∈X

g(x).

• The form of g(x) is unknown to us;
• g(x) can only be evaluated via noisy simulation observation
G(x;ω) such that g(x) = E[G(x;ω)];

• ω represents the randomness of simulation experiments;
• It is a black-box optimization with random noises.

• When x takes continuous or discrete values in X , the problem
is called continuous OvS (COvS) or discrete OvS (DOvS).

• Examples of COvS:
• Traffic signal optimization to optimize the expected

throughput of a transportation hub;
• Parameter tuning in machine learning.
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Random Search

• Random search is an important category of algorithms to
solve OvS problems.

• The key of a random search algorithm is to handle three “E”:
• Exploration: Search globally in the entire domain;
• Exploitation: Search locally near the current optimum;
• Estimation: Estimate objective function values based on noisy

simulation observations.

• The first two E’s are tackled by the sampling distribution.

• Estimation can be conducted using
• the multi-observation approach;

- repeatedly sample the same solution
- convergence due to the Strong Law of Large Numbers

• the single-observation approach.

(preferable for COvS)

- sample each solution only once
- k-nearest neighbor / shrinking-ball mechanism
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Gaussian Process Regression

• It takes a Bayesian viewpoint.

• Suppose the unknown g(x) is a (random) sample path of a
Gaussian process fGP on X , with
• mean function µ0 : X → R, defined by

µ0(x) = E[fGP(x)];

• covariance function k0 : X × X → R, defined by

k0(x,x′) = E[(fGP(x)− µ0(x))(fGP(x
′)− µ0(x

′))].

• For any x, g(x) ∼ N (µ0(x), k0(x,x)) (prior distribution).

• After running simulation at Xn = {xi}ni=1 with observations
Gn = (G(x1), . . . ,G(xn))

ᵀ
, how to predict g(x)?
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Gaussian Process Regression

• Assume G(x)|g(x) ∼ N (g(x),λ2(x)).

• For any x,

g(x)|{Xn,Gn} ∼ N (µn(x), kn(x,x)),

µn(x) := µ0(x) + k0(x,Xn)[k0(X
n,Xn) +Σn]−1[Gn − µ0(X

n)],

kn(x,x) := k0(x,x)− k0(x,Xn)[k0(X
n,Xn) +Σn]−1k0(X

n,x),

where

• Σn = diag(λ2(xi), . . . ,λ
2(xn));

• k0(Xn,Xn) = [k0(xi − xj)]1≤i, j≤n ∈ Rn×n;
• k0(x,Xn) = (k0(x− x1), . . . , k0(x− xn)) ∈ R1×n;
• k0(Xn,x) = k0(x,Xn)ᵀ.

• Usually, use µn(x) to predict g(x)|{Xn,Gn}, and use
kn(x,x) to quantify the uncertainty.
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Gaussian Process Regression

• An illustration:
• d = 1, X = [0, 1];
• µ0(x) ≡ 0, k0(x,x′) = 1.5× e−100(x−x′)2 ;
• G(x)|g(x) ∼ N (g(x), 0.52);
• {xi}ni=1 is generated from uniform[0, 1].
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Exploration, Exploitation, Estimation

• Recall the Gaussian process regression
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• It provides a natural way to handle the three “E”.
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Sampling Distribution

• Construct fn(x) =
P{Z(x)>c}∫

X P{Z(z)>c}dz , x ∈ X , where

• c = maxx∈X µn(x);
• Z(x) ∼ N (µn(x), kn(x,x)).

• It is a straightforward extension of the proposed sampling
distribution in Sun et al. (2014, OR)†

• However,
• Sun et al. (2014, OR) considers DOvS problems.
• The Gaussian process regression is only used for constructing

sampling distribution, so a fast approximation (instead of the
original form) is adopted.

• Estimation is achieved with the multi-observation approach.
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†
Sun L, Hong LJ, Hu Z (2014) Balancing exploitation and exploration in discrete optimization via simulation

through a Gaussian process-based search. Operations Research 62(6):1416–1438.
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The Algorithm

Step 0 (Initialization). Impose a Gaussian process with µ0 and k0.
Specify a r > 0. Set s = 0, n = 0, X0 = ∅ and G0 = ∅,
and sampling distribution f0(x).

Step 1 (Sampling). Set s = s+ 1. Sample xr(s−1)+1, . . . ,xrs
independently from fn(x), and obtain simulation
observations G(xr(s−1)+1), . . . ,G(xrs).

Step 2 (Calculation). Set n = rs. Let Xn = Xr(s−1) ∪ {xr(s−1)+1, . . . ,

xrs} and Gn =
(
[Gr(s−1)]ᵀ,G(xr(s−1)+1), . . . ,G(xrs)

)ᵀ
.

Calculate µn(x) and kn(x,x). Let x∗n = argmaxx∈X µn(x).
Construct sampling distribution fn(x).

Step 3 (Stopping). If the stopping condition is not met, go to Step 1;
otherwise, stop and output x∗n and µn(x

∗
n).

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 11 / 25
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For A General Framework

• The convergence analysis is for a general framework of
Gaussian process based random search algorithms for COvS
problems.

• More specifically, it only requires that the constructed
sampling distribution fn(x) is lower bounded.
• Not necessary to utilize the information contained in µn(x)

and kn(x,x);
• Can be either static or dynamic.
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Global Convergence

• Assumptions:

A1. [feasible region] X is a compact set in Rd, and cl(int(X )) = X .
A2. [simulation noise] G(x)|g(x) ∼ N (g(x),λ2(x)), and λ2(x) is

bounded on X .
A3. [g(x) & GP] g(x) is a sample path of a Gaussian process,

whose µ0(x) is continuous and k0(x,x′) satisfies certain
regularity conditions.

A4. [sampling distribution] fn(x) ≥ α for all n and x ∈ X .

• Extra notations:
• g∗ = maxx∈X g(x);
• X ∗ = argmaxx∈X g(x);
• d(x,A) = infx′∈A ‖x− x′‖.

• Main result:

Theorem 1. µn(x
∗
n)→ g∗ and d(x∗n,X ∗)→ 0 almost surely as n→∞.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 14 / 25
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n)→ g∗ and d(x∗n,X ∗)→ 0 almost surely as n→∞.
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Rate of Convergence

• Assumptions:

A1’. [feasible region] X ⊂ Rd is a bounded convex set with
nonempty interior.

A2. [simulation noise] G(x)|g(x) ∼ N (g(x),λ2(x)), and λ2(x) is
bounded on X .

A3’. [g(x) & GP] g(x) is a sample path of a Gaussian process fGP ,
and the first-order derivatives of fGP are stationary Gaussian
processes with almost-sure continuous sample paths.

A4. [sampling distribution] fn(x) ≥ α for all n and x ∈ X .

• Main result:

Theorem 2. There exists a constant C0 > 0 such that, as n→∞,

P
{
|µn(x∗n)− g∗| >

(
16C0 logn
nκ(n)

)1/2
}
→ 0, where κ(n) = 2

d+2

− b log logn
logn . That is, the rate of convergence is Õp(n

−1/(d+2)).

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 15 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Rate of Convergence

• Assumptions:

A1’. [feasible region] X ⊂ Rd is a bounded convex set with
nonempty interior.

A2. [simulation noise] G(x)|g(x) ∼ N (g(x),λ2(x)), and λ2(x) is
bounded on X .

A3’. [g(x) & GP] g(x) is a sample path of a Gaussian process fGP ,
and the first-order derivatives of fGP are stationary Gaussian
processes with almost-sure continuous sample paths.

A4. [sampling distribution] fn(x) ≥ α for all n and x ∈ X .

• Main result:

Theorem 2. There exists a constant C0 > 0 such that, as n→∞,

P
{
|µn(x∗n)− g∗| >

(
16C0 logn
nκ(n)

)1/2
}
→ 0, where κ(n) = 2

d+2

− b log logn
logn . That is, the rate of convergence is Õp(n
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Estimation of λ2(x) and GP Parameters

• If the simulation noises are homoscedastic, i.e., λ2(x) ≡ λ2:
• Estimate λ2, together with GP parameters, using MLE

method.
• Only estimate these parameters once, to alleviate the

computational burden.

• If the simulation noises are heteroscedastic:
• To deal with the situation that only single observation is

available on each sampled point, a kernel-based sample
variance estimator is adopted to estimate {λ2(xi)}ni=1.

• GP parameters are estimated using MLE method after the
variances are estimated.

• GP parameters are estimated only once, while {λ2(xi)}ni=1 are
updated repeatedly when new observations are obtained.
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Sampling from the Sampling Distribution

• Recall the sampling distribution fn(x) =
P{Z(x)>c}∫

X P{Z(z)>c}dz .

• Acceptance-Rejection Sampling Scheme (exact):

S1. Generate y from uniform(X ) and u from uniform[0, 1].
S2. If u ≤ 2P{Z(y) > c}, return y; otherwise, go to S1.

• Markov Chain Coordinate Sampling Scheme (approximate):

S0. Specify iteration number T . Let t = 0, y = y0.
S1. Let t = t+ 1. Generate j uniformly from {1, . . . , d}. Let

l(y, j) be the line that passes through y and parallel to the yj
coordinate axis. Sample a point on l(y, j) ∩ X uniformly,
whose j-th coordinate is denoted as b. Set z = y and zj = b.

S2. Generate u from uniform[0, 1]. If u ≤ P{Z(z)>c}
P{Z(y)>c} , set y = z.

S2. If t = T , return y; otherwise, go to S1.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 18 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Sampling from the Sampling Distribution

• Recall the sampling distribution fn(x) =
P{Z(x)>c}∫

X P{Z(z)>c}dz .

• Acceptance-Rejection Sampling Scheme (exact):

S1. Generate y from uniform(X ) and u from uniform[0, 1].
S2. If u ≤ 2P{Z(y) > c}, return y; otherwise, go to S1.

• Markov Chain Coordinate Sampling Scheme (approximate):

S0. Specify iteration number T . Let t = 0, y = y0.
S1. Let t = t+ 1. Generate j uniformly from {1, . . . , d}. Let

l(y, j) be the line that passes through y and parallel to the yj
coordinate axis. Sample a point on l(y, j) ∩ X uniformly,
whose j-th coordinate is denoted as b. Set z = y and zj = b.

S2. Generate u from uniform[0, 1]. If u ≤ P{Z(z)>c}
P{Z(y)>c} , set y = z.

S2. If t = T , return y; otherwise, go to S1.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 18 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Sampling from the Sampling Distribution

• Recall the sampling distribution fn(x) =
P{Z(x)>c}∫

X P{Z(z)>c}dz .

• Acceptance-Rejection Sampling Scheme (exact):

S1. Generate y from uniform(X ) and u from uniform[0, 1].
S2. If u ≤ 2P{Z(y) > c}, return y; otherwise, go to S1.

• Markov Chain Coordinate Sampling Scheme (approximate):

S0. Specify iteration number T . Let t = 0, y = y0.
S1. Let t = t+ 1. Generate j uniformly from {1, . . . , d}. Let

l(y, j) be the line that passes through y and parallel to the yj
coordinate axis. Sample a point on l(y, j) ∩ X uniformly,
whose j-th coordinate is denoted as b. Set z = y and zj = b.

S2. Generate u from uniform[0, 1]. If u ≤ P{Z(z)>c}
P{Z(y)>c} , set y = z.

S2. If t = T , return y; otherwise, go to S1.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 18 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Solving x∗n = argmaxx∈X µn(x) in Each Iteration

• It requires not only for outputting the current solution in each
iteration, but also for constructing sampling distribution in
each iteration (key reason).

• Numerical methods:
• When the dimension is low, simply evaluate µn(x) on a dense

grid within X .
• When the dimension is high, compute x̂†n = argmaxx∈Xn µn(x),

and use some nonlinear optimization solvers with x̂†n as initial
solution.

• Revise the original algorithm:
• Simply use x̂†n instead of x∗n.
• Under Assumption A3’, the aforementioned global convergence

and rate of convergence still hold.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 19 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Solving x∗n = argmaxx∈X µn(x) in Each Iteration

• It requires not only for outputting the current solution in each
iteration, but also for constructing sampling distribution in
each iteration (key reason).

• Numerical methods:
• When the dimension is low, simply evaluate µn(x) on a dense

grid within X .
• When the dimension is high, compute x̂†n = argmaxx∈Xn µn(x),

and use some nonlinear optimization solvers with x̂†n as initial
solution.

• Revise the original algorithm:
• Simply use x̂†n instead of x∗n.
• Under Assumption A3’, the aforementioned global convergence

and rate of convergence still hold.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 19 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

Solving x∗n = argmaxx∈X µn(x) in Each Iteration

• It requires not only for outputting the current solution in each
iteration, but also for constructing sampling distribution in
each iteration (key reason).

• Numerical methods:
• When the dimension is low, simply evaluate µn(x) on a dense

grid within X .
• When the dimension is high, compute x̂†n = argmaxx∈Xn µn(x),

and use some nonlinear optimization solvers with x̂†n as initial
solution.

• Revise the original algorithm:
• Simply use x̂†n instead of x∗n.
• Under Assumption A3’, the aforementioned global convergence

and rate of convergence still hold.

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 19 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

1 Introduction

2 Gaussian Process Based Random Search

3 Convergence

4 Implementation

5 Numerical Experiments

6 Remarks

沈海辉 Gaussian Process Based Random Search @ 协同创新与管理分会 2023 20 / 25



Introduction Gaussian Process Based Random Search Convergence Implementation Numerical Experiments Remarks

g(x) Generated from GP with Known Parameters

• Setting:
• d = 2, X = [0, 1]2;
• µ0(x) ≡ 1, k0(x,x′) = 4× e−80‖x−x′‖2 ;
• G(x)|g(x) ∼ N (g(x), 0.52).we cannot try problems with d > 3. We leave the discussion on the influence of dimensionality to

Section 6.3.
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Figure 1: Empirical Performance of the GPS-C Algorithm on Two-Dimensional Problems
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Figure 2: Empirical Performance of the GPS-C Algorithm on Three-Dimensional Problems

6.2 Empirical Performance on Various Test Problems

In this subsection our goal is to check the empirical performance of the GPS-C algorithm on prob-

lems that are not generated from Gaussian processes. For comparison, two kriging-based Bayesian

optimization algorithms, i.e., the SKO algorithm of Huang et al. (2006) and the KGCP algorithm

of Scott et al. (2011), and three random search based algorithms, i.e., the ASR algorithm of An-

dradóttir and Prudius (2010), the IHR-SO and the AP-SO algorithms of Kiatsupaibul et al. (2018),

are also implemented. In their corresponding papers, the kriging-based Bayesian optimization al-

gorithms and the random search based algorithms are implemented and tested using problems with

homoscedastic and heteroscedastic noises, respectively. Hence, we add simulation noises with either

equal variances or unequal variances to the objective functions in the comparison with each type

28
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Given and Deterministic g(x)

• Setting:
• d = 2, X = [0, 100]2;

• g(x) = 10 · sin6(0.05πx1)

22((x1−90)/50)2
+ 10 · sin6(0.05πx2)

22((x2−90)/50)2
;

• G(x)|g(x) ∼ N (g(x), 1
4g(x)) (variances treated as unknown).
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(a) GPS-C algorithm
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(b) ASR algorithm
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(c) IHR-SO algorithm
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(d) AP-SO algorithm

Figure 3: Performance of the GPS-C and Other Compared Algorithms for the Hills Problem

the GPS-C algorithm can sample design points in a more adaptive manner and converges more

quickly. Figure 4 shows the 30 replications of the four algorithms when solving the the Rosenbrock

problem, and similar results are observed. The GPS-C algorithm identifies good solutions in early

iterations and approaches the global optimal function value gradually in most of the 30 replications.

Besides the ability to balance exploration and exploitation adaptively, this excellent performance

can also be attributed partly to the characteristics of the Rosenbrock function, which is quite flat

in the neighborhood of the global optimal solution.

To further illustrate how the GPS-C algorithm works, in Figure 5 we plot the sampled points of

the four algorithms up to different sample size when solving the Hills problem. It can be observed

that the GPS-C algorithm achieves a good balance between exploration and exploitation compared

with the other two algorithms. Many points are sampled in good regions (around the best solution

and the two second-best solutions), while the algorithm keeps exploring the whole feasible region.

The comparison of these three algorithms illustrates how the constructed sampling distributions of

the GPS-C algorithm can guide the searches in each iteration.

Lastly, we also implement the revised GPS-C algorithm (as described in Section 4.3) to solve

the two problems. The performance of the revised GPS-C algorithm is shown in Figure EC.2 of the

e-companion with the same performance measure. It can be observed that the performance of the

31
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Concluding Remarks

• We propose a framework of Gaussian process based random
search algorithms for COvS problems.
• It uses Gaussian process regression for estimation

(single-observation approach);
• It allows flexible sampling distribution to balance exploration

and exploitation (a good choice is to utilize the Gaussian
process regression again);

• For general sampling distributions, the global convergence and
rate of convergence are established.
• By exploring the properties of Gaussian process regression;
• Some intermediate results and techniques have potential to be

applied in other applications of Gaussian process regression.

• Some implementation issues are addressed.
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Thank you for your attention!

Haihui Shen（沈海辉）
shenhaihui@sjtu.edu.cn

July 20, 2023
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