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Abstract. The inpatient bed allocation that allows beds shared among different departments is an important

and challenging problem for a healthcare system. When the objective function(s) and (some) constraints

need to be estimated via expensive and noisy stochastic simulation, a simulation optimization algorithm

is required to solve this problem. In literature, there is a heuristic algorithm highly customized for one

specific inpatient bed allocation problem, and it performs quite well on that problem. However, its lack

of theoretical convergence and high specialization may not give practitioners enough confidence to apply

it on real inpatient bed allocation problems. To mitigate such issues, this paper proposes to use the

empirical stochastic branch-and-bound (ESB&B) algorithm, which is theoretically convergent and suitable

for relatively general problems. A modest improvement for the original ESB&B algorithm is made and how

to adapt the ESB&B algorithm to inpatient bed allocation problems is presented. Numerical experiments

reveal the generality and fairly satisfying performance of the ESB&B algorithm, and the superiority of the

improved ESB&B algorithm over the original one.

Keywords: Healthcare management, resource sharing, bed allocation, simulation optimization, empirical

stochastic branch-and-bound (ESB&B)

1. Introduction

The number of inpatient beds is the most fun-

damental measure of capacity for a healthcare

system (Green 2004), since it can not be ar-

bitrarily increased without matching the re-

sources of staff, facilities, space, etc. The insuf-

ficiency of inpatient beds will often cause con-

gestion in upstream departments (or wards)

and lead to long waiting time of patients. So,

how to optimally allocate the limited inpatient

beds among different departments is an impor-

tant issue. However, it is also a difficult issue

due to the complexity of the healthcare sys-

tem and the multiple objectives and constraints

that need to be considered. A healthcare sys-

tem, which can be viewed as an integrated and

adaptive set of people, processes and products,

is a typical complex service system (Tien and

Goldschmidt-Clermont 2009). Patients arrive

at the healthcare system, flow among differ-

ent departments, and depart after service com-

pletion or waiting too long, forming a com-

plicated queueing network (Bhattacharjee and

Ray 2014). Only to effectively evaluate the

queueing-related performance (such as utiliza-
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Figure 1 An Example of CO Configuration of 25 Inpatient Beds among 4 Departments

tion of inpatient beds and waiting time of pa-

tients) under a specific inpatient bed allocation

scheme (without actually trying it in the real

system) is already a challenging problem. One

may consider simplifying the queueing net-

work by imposing some assumptions so that

closed-form expressions for interested perfor-

mance exist, suffering from the gap between

the model and the reality. Alternatively, one

can resort to simulation that ensures high fi-

delity but is time-consuming. Oftentimes, the

decision makers also have to consider many

other objectives or constraints in addition to

the basic queueing-related performance when

optimizing the inpatient bed allocation, e.g.,

profitability, quality, patient satisfaction, and

social equity (Porter 2010, Zhou et al. 2018).

Recently, the emerging attention to the

shared (or pooled) inpatient beds among de-

partments further increases the difficulty of

the inpatient bed allocation (Wang et al. 2024).

In the past, each department was allocated a

certain number of dedicated inpatient beds,

which are occupied and used exclusively by it-

self. In such a situation, the decision variables

of the inpatient bed allocation optimization

problem are merely the numbers of inpatient

beds for all departments. Since there are well-

known benefits of resource pooling in many

systems, it is natural to anticipate that shar-

ing (or pooling) some inpatient beds among

departments may reduce congestion and pa-

tients’ waiting time. However, the nursing cost

is usually higher when shared inpatient beds

exist, because the shared inpatient beds must

be equipped with nurses who are able to nurse

different types of patients. Therefore, the opti-

mal allocation of inpatient beds may be neither

the fully dedicated configuration nor the fully

shared configuration, but an intermediate one.

In general, one can consider the following

flexible inpatient bed configuration. All the

departments are divided into several (at least

one) clusters, and in every cluster each depart-

ment has some dedicated inpatient beds and

there are some other inpatient beds (that form

a so-called overflow ward) to be shared with

all departments in this cluster. When a pa-

tient arrives, s/he will be assigned a dedicated

inpatient bed in his destination department if
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there are available dedicated beds in that de-

partment; otherwise, s/he will be assigned a

shared inpatient bed in the cluster to which

his destination department belongs given that

there are available shared beds in that cluster.

If all dedicated and shared inpatient beds are

occupied, s/he will wait until her/his waiting

time threshold is reached, in which case s/he

will leave without service (for simplicity, say

this patient is rejected). Such flexible config-

uration is referred to clustered overflow (CO)

configuration in Izady and Mohamed (2021)

and (Gong et al. 2022). Figure 1 shows an ex-

ample of CO configuration with 25 inpatient

beds among 4 departments, wherein two clus-

ters are formed and there are 3 and 4 shared

beds in the two clusters respectively. It is easy

to see that the aforementioned fully dedicated

configuration and fully shared configuration

are just two specific instances of the CO config-

uration. So, if one optimizes the inpatient bed

allocation under the CO configuration, the re-

sult will be better than (or at least the same

as) that in the fully dedicated configuration

or fully shared configuration. However, such

benefits come at a cost. The optimization under

the CO configuration is much more challeng-

ing due to the larger space of feasible solutions.

Undoubtedly, it is quite attractive to both

scholars and practitioners to design an efficient

algorithm that is capable of solving the inpa-

tient bed allocation problem under the CO con-

figuration. There are indeed some attempts in

the literature, but drawbacks or limitations of

the existing approaches make the problem still

unsolved (or at least partially unsolved); see

detailed literature review in Section 2. This pa-

per aims to introduce a general simulation opti-

mization algorithm (named empirical stochas-

tic branch-and-bound or ESB&B for short) for

the inpatient bed allocation problem under the

CO configuration, which has several advan-

tages compared to the existing ones.

The rest of the paper is organized as fol-

lows. Detailed literature review on the existing

approaches for inpatient bed allocation with

sharing and the simulation optimization tech-

nique adopted in the paper is given in Section

2. Section 3 illustrates the general bed allo-

cation problem, and introducing the problem

from Gong et al. (2022) as an example. In Sec-

tion 4, the ESB&B algorithm is introduced with

a modest improvement, then how to adapt the

ESB&B algorithm to the inpatient bed alloca-

tion problems under CO configuration is dis-

cussed. In Section 5, numerical experiments

are conducted to show the generality and fairly

satisfying performance of ESB&B algorithm in

contrast to other algorithms, and the superior-

ity of the improved ESB&B algorithm over the

original one. Finally, Section 6 concludes the

paper.

2. Literature Review

Some researchers have considered configura-

tions that allow shared beds but are less flex-

ible than the CO configuration. Best et al.

(2015) consider a configuration called wing for-

mation (WF), where departments with similar

functions are brought together to form a wing,

sharing inpatient beds. In other words, WF

is a special case of CO in which each depart-

ment has no dedicated inpatient beds. The

optimization objective is defined as the total

expected utility gained from patients and the

main constraint is the total number of inpa-
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tient beds. To evaluate the expected utility

for each cluster, they simplify each cluster to

an M/M/n + M (Erlang-A) queueing model,

i.e., the classical M/M/n queueing model with

exponentially distributed waiting time thresh-

old, for which closed-form expression exists.

Even so, they find that the feasible region is

still too large to afford an exact algorithm to

find the optimal solution (although WF is al-

ready less flexible than CO). They reduce the

feasible region by imposing the restriction that

clusters are formed by making cuts in a fixed

sequence of the departments, and then a dy-

namic programming (DP) approach is used to

find the exact optimal solution. Bekker et al.

(2017) consider a configuration called earmark-

ing (EAR), where each department has ded-

icated beds and all departments share some

beds. In other words, EAR is a special case

of CO that there is only one cluster. However,

they do not consider the issue of optimizing

the inpatient bed allocation under EAR config-

uration.

Izady and Mohamed (2021) first consider

the general CO configuration. They propose

two formulations for the inpatient bed alloca-

tion under CO configuration. The first one is

the total cost minimization (TCM) formulation,

which seeks to minimize the total expected

daily costs of rejected patients and nursing

teams subject to the total number of inpatient

beds. The second one is the constrained block-

ing minimization (CBM) formulation, which

aims to minimize the total expected number

of rejected patients subject to the total num-

ber of beds and the expected nursing cost

falling below a given threshold. To evaluate

the objective functions, they simplify the prob-

lem by imposing assumptions that (i) patients

arrive following the Poisson process; (ii) the

length of stay once admitted is exponentially

distributed; and (iii) the waiting time thresh-

old is zero, then the approximation method is

adopted. They also restrict the clusters to cuts

of a fixed sequence of the departments as in

Best et al. (2015), in order to reduce the feasible

region. The TCM formulation is solved us-

ing DP approach and conjugate direct orthog-

onal shift (CDOS) heuristic, while the CBM

formulation is solved using an integer linear

programming approach adapted with CDOS

heuristic and enumeration.

Gong et al. (2022) revisit the general CO

configuration and try to solve it in a more real-

istic setting. In particular, they do not impose

assumptions on the distributions of patients’

interarrival times and length of stay. The op-

timization objective is defined as the weighted

total cost of rejecting patients, holding pa-

tients waiting, and nursing cost (for dedicated

beds and shared beds). They also consider an

equity-of-access constraint that is important to

public hospitals in China. Both the above ob-

jective and constraint can not be evaluated an-

alytically or even with some fair approxima-

tion. So, an inpatient simulation model is de-

veloped and the optimization is based on the

inputs and outputs of the stochastic simula-

tion, which is known as a simulation optimiza-

tion problem (Fu 2015). Besides, they do not

restrict the feasible region as in Best et al. (2015)

and Izady and Mohamed (2021). These factors

together make their problem quite challeng-

ing to solve. A simulation-based metaheuris-

tic approach (SMA) is proposed to search for

the optimal solution in the entire feasible re-



Li et al.: Simulation Optimization for Inpatient Bed Allocation with Sharing 5

gion. In particular, a niching genetic algorithm

(GA) framework is proposed to optimize the

cluster partition, and each partition is evalu-

ated by optimizing the bed allocation through

an adaptive hyperbox algorithm-based local

search. The practical performance of SMA is

quite good as demonstrated in their simulation

experiments.

There are many other studies on the health-

care system that utilize simulation techniques

to deal with the complexity, see Shirazi et al.

(2021) and Ghasemi et al. (2023) for instance.

However, in these studies, simulation models

are not directly used for objective function eval-

uation. Instead, simulation models are run to

produce some input parameters or constraints

for the mathematical model. In the end, the

problems are transformed into classical deter-

ministic optimization problems, and then ex-

act or heuristic methods are designed to solve

the problems. Such simulation techniques are

also used in addressing the complexity of some

disaster occurrences (Khalili-Damghani et al.

2022, Ahmadi Choukolaei et al. 2024). But for

the above mentioned inpatient bed allocation

problem, the simulation is run to evaluate the

objective function and verify the constraint for

a given solution. It is not possible to trans-

form the formulation into deterministic opti-

mization, and the optimization has to be car-

ried out based on the inputs and noisy outputs

of the stochastic simulation.

This paper focuses on general inpatient bed

allocation problems with (a) flexible sharing,

which refers to the CO configuration; (b) realis-

tic queueing network setting, which means the

above objective and some constraints have to

be evaluated via time-consuming simulation.

Among all the literature including those men-

tioned above, to the best of our knowledge, the

SMA of Gong et al. (2022) is the only algorithm

capable for such problems. However, there

are still two drawbacks or limitations in the

SMA. First, the SMA is a heuristic simulation

optimization algorithm, which means there is

no guarantee that the solved solution will con-

verge to the optimal solution when the solving

time (essentially the simulation time) goes to

infinity. Second, the SMA is highly customized

for the specific problem setting considered in

Gong et al. (2022). In other words, when the

setting is changed (no matter the objective, con-

straints, or the operation rules of the healthcare

system), SMA may no longer perform well or

may need adjustment. These two issues will

make a decision maker not confident enough

when applying SMA to real problems that are

not exactly the same as in Gong et al. (2022).

This paper aims to introduce a simulation

optimization algorithm for inpatient bed allo-

cation problems under CO configuration (i.e.,

the most flexible configuration allowing bed

sharing), which mitigates the two issues of

SMA mentioned above. In particular, such

an algorithm needs to be convergent theoreti-

cally, in addition to good performance in finite

time. Besides, it should be suitable for rel-

atively general inpatient bed allocation prob-

lems under CO configuration where the objec-

tive and (some) constraints need to be evalu-

ated via stochastic simulation, including but

not limited to the problem considered in Gong

et al. (2022). In other words, such an algo-

rithm should perform fairly well for a variety

of problems without specific adjustments or

parameter tuning. These two properties may
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reassure the decision makers when applying

the algorithm in real inpatient bed allocation

problems.

Simulation optimization has been a chal-

lenging but active research topic in recent

decades. Depending on the decision variables,

simulation optimization can be mainly clas-

sified as continuous simulation optimization

and discrete simulation optimization, and for

each type various algorithms have been pro-

posed in the literature; see Amaran et al. (2016)

for a review. Apparently, the general inpatient

bed allocation problems under CO configura-

tion (like the one considered in Gong et al.

(2022)) belong to the discrete simulation opti-

mization category. However, many existing al-

gorithms for discrete simulation optimization

problems that are proved to be (locally or glob-

ally) convergent and have satisfying finite sam-

ple performance, e.g., the COMPASS algorithm

of Hong and Nelson (2006) and the GPS algo-

rithm of Sun et al. (2014), are not suitable for

inpatient bed allocation problems. The main

reason is that these discrete simulation opti-

mization algorithms assume that the feasible

region is simply the intersection of the integer

lattice Zd with a closed set in Rd , where the

dimensionality d is fixed. Moreover, there is

a well-defined neighborhood structure in the

feasible region, i.e., for two solutions whose

(Euclidean) distance is short their function val-

ues should be close (which is analogous to the

smoothness assumption for a continuous sur-

face). However, for the inpatient bed allocation

problems under CO configuration, the feasible

region is much more complicated. First, a fea-

sible solution consists of how the clusters are

formed, the number of shared beds in each

cluster, and the number of dedicated beds in

each department. Clearly, the dimensionality

of the feasible solution varies when the num-

ber of clusters varies. Second, the distance

(no matter Euclidean distance, Manhattan dis-

tance, or others) between two solutions (even

given that they have the same dimensionality)

does not give any information about the differ-

ence of their function values. For example, by

merely swapping two departments in two clus-

ters, the resulting two solutions tend to have a

small distance, but their function values may

be dramatically different. So, it remains to be

investigated what simulation optimization al-

gorithm is capable of solving the inpatient bed

allocation problems under CO configuration,

which is theoretically convergent and has sat-

isfying finite sample performance.

Essentially, the inpatient bed allocation

problems under CO configuration are combi-

natorial optimization problems where the ob-

jective function and (some) constraints need to

be estimated via expensive and noisy stochas-

tic simulation. Recall that for determinis-

tic combinatorial optimization problems (i.e.,

the objective function and constraints can be

analytically evaluated), the branch-and-bound

(B&B) algorithmic framework is a widely-used

method for producing exact solution (Lawler

and Wood 1966). Norkin et al. (1998a) and

Norkin et al. (1998b) adapt the B&B idea to

stochastic optimization problems and propose

the stochastic B&B (SB&B) method. By assum-

ing that the lower and upper bounds of the

subregions can be estimated more and more

precisely with increasing simulation effort, the

SB&B method is proved to be globally conver-

gent for problems with finite feasible solutions.
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However, for general simulation optimization

problems, there may not exist such bound es-

timators. To make SB&B more practical, Xu

(2009) and Xu and Nelson (2013) propose the

empirical SB&B (ESB&B) algorithm for discrete

simulation optimization, which estimates the

bounds based on the performance of sampled

solutions and is still proved to be globally con-

vergent. Although in Xu (2009) and Xu and

Nelson (2013) they focus on discrete simula-

tion optimization problems where the feasible

region is the intersection of the integer lattice

Z
d with a closed set in Rd , the theoretical re-

sults hold for the arbitrary feasible region as

long as the number of feasible solutions is fi-

nite. Moreover, due to the inherited spirit from

the classical B&B algorithmic framework, we

believe that the ESB&B algorithm can be ex-

tended to the inpatient bed allocation problems

under CO configuration and its finite sample

performance should be fairly satisfying.

The main contributions of this paper are as

follows. First, for general inpatient bed alloca-

tion problems under CO configuration where

the objective and (some) constraints need to

be evaluated via stochastic simulation, we pro-

pose to use ESB&B algorithm, which mitigates

the two drawbacks of the existing SMA algo-

rithm. Second, a modest improvement for the

original ESB&B algorithm is made and how to

adapt the ESB&B algorithm to inpatient bed

allocation problems is presented. The conver-

gence of ESB&B is guaranteed by its theoretical

property and is also reflected in simulation ex-

periments. The generality of ESB&B over a va-

riety of problems is also demonstrated in sim-

ulation experiments, which outperforms the

existing SMA. Moreover, the superiority of the

improved ESB&B algorithm over the original

ESB&B is also observed.

3. Problem Description

Suppose a healthcare system consists of I ∈ Z+
departments and B ∈ Z+ inpatient beds. The

decision maker needs to divide the depart-

ments into J ∈ Z+ clusters, where J ≤ I and one

department can only belong to one cluster. Let

I � {1, · · · , I} be the set of departments, where

the corresponding index is i (or h sometimes

when necessary). Let J � {1, · · · , J} be the set

of clusters, where the corresponding index is

j. The decision maker also needs to decide the

set of departments that belong to cluster j ∈ J,
which is denoted as Γ j . In addition to the clus-

ter partition, the decision maker also needs to

determine the number of dedicated beds for

department i ∈ I, which is denoted as ni ∈ N,

and the number of shared beds for cluster j ∈ J,
which is denoted as o j ∈ N. This paper consid-

ers the following general inpatient bed alloca-

tion optimization problem under CO configu-

ration:

min
J,{Γ1 ,··· ,ΓJ },
{n1 ,··· ,nI },
{o1 ,··· ,oJ }

f (J, Γ1 , · · · , ΓJ , n1 , · · · , nI , o1 , · · · , oJ)

s.t. ∑
i∈I

ni +
∑
j∈J

o j � B

gk(J, Γ1 , · · · , ΓJ ,n1 , · · · , nI , o1 , · · · , oJ)
≤ ck , ∀k ∈ {1, · · · , K}

ni , o j ∈ N, ∀i ∈ I, j ∈ J
J ∈ I

where f represents a general objective func-

tion, whose value given all the decision vari-
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ables needs to be evaluated via stochastic sim-

ulation; gk , k ∈ {1, · · · , K} represents K other

performances which need to be controlled un-

der upper bounds ck (note that a lower bound

can be transformed to an upper bound by

adding a negative sign to the performance). It

is possible that some gk also needs to be eval-

uated via stochastic simulation.

To show how complicated the problem can

be, we use the same inpatient bed allocation

problem as in Gong et al. (2022) as an illus-

trative example, while emphasizing that our

simulation optimization algorithm is proposed

for more general inpatient bed allocation prob-

lems under CO configuration where the objec-

tive and (some) constraints need to be eval-

uated via stochastic simulation. The key de-

tails of this illustrative problem are summa-

rized as follows. When a patient arrives at the

healthcare system, s/he will have a destination

department. If that department has available

dedicated beds, s/he will be admitted imme-

diately and assigned a dedicated bed in that

department. If dedicated beds are unavailable

but there are available shared beds in the clus-

ter to which that department belongs, s/he will

also be admitted immediately and assigned a

shared bed in that cluster. Otherwise, the pa-

tient needs to wait in line of that department.

When later a dedicated bed (in that depart-

ment) becomes available, it will be assigned

to the waiting patients (in that department)

according to the first-come-first-served (FCFS)

rule. When later a shared bed (in that cluster)

becomes available, it will be assigned to the

waiting patients in that cluster according to a

specific priority rule (specified later). When

a patient’s waiting time reaches his waiting

threshold (i.e., the maximum time s/he is will-

ing to wait), s/he will leave the system imme-

diately without service (i.e., rejected). There

are some additional assumptions to simplify

the problem:

(a) For department i ∈ I, there is only one

type of patients whose destination de-

partment is i (call them type i patients

for short).

(b) For type i ∈ I patients: 1) They arrive

randomly and their interarrival times are

independent and identically distributed

(i.i.d.) random variables with mean 1/λi

and probability density (pdf) fi ; 2) They

have the same waiting time threshold Di ;

3) Their lengths of stay (i.e., the time

lengths they occupy the inpatient beds)

once admitted are i.i.d. random variables

with mean 1/μi and pdf gi , which is irrel-

evant to the inpatient bed type (dedicated

or shared).

(c) The ratio of nurses to beds is a constant

ϕ, which is the same for any department

and overflow ward. The average nursing

cost per time unit of dedicated beds in

department i ∈ I is ξi , and that of shared

bed in cluster j ∈ J is ξΓ j .

(d) Different types of patients arrive inde-

pendently of each other, and a patient

who finishes service (in either a depart-

ment or an overflow ward) will leave the

system immediately without entering

another department or overflow ward.

(e) The inpatient beds are fully flexible and

their allocation is not limited by anything

else like bed class (e.g., single, double,

etc.) or special requirement (e.g. same

sex or isolation requirement, etc.).
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Let Wi(t) denote the total waiting time of

type i ∈ I patients by time t, and Ri(t) the to-

tal number of type i patients rejected. For a

type i ∈ I patient, let CW
i denote the cost of

waiting per time unit, and CR
i the cost of being

rejected. For type i ∈ Ipatients, let Pi(t)denote

the admission rate by time t, which is the ratio

of the number of admitted type i patients to

the number of arrived type i patients by time

t. To ensure the equity of access to different

departments, there is an upper bound δ > 0

for limt→∞(Pi(t) − Ph(t)) (i.e., the long-run ad-

mission rate difference) for any i , h ∈ I. It is a

hard constraint in the sense that if an inpatient

bed allocation scheme leads to the violation

of limt→∞(Pi(t) − Ph(t)) ≤ δ, ∀i , h ∈ I, then it

is an infeasible scheme. The priority rule of

assigning a newly available shared bed to the

waiting patients within the same cluster j ∈ J
also accommodates such consideration of eq-

uity of access. In particular, for cluster j ∈ J,
if the equity-of-access constraint is satisfied for

all departments in this cluster (i.e., Γ j), then

higher priority is given to patient type i ∈ Γ j

with larger cost saving rate CW
i μi ; otherwise,

higher priority is given to patient type i ∈ Γ j

with the smallest admission rate Pi(t). Once a

patient type is chosen, inside the queue of that

patient type the FCFS rule is still adopted. It

is worth mentioning that the equity-of-access

constraint is useful to ensure fairness when op-

timizing the inpatient bed allocation. Without

such a hard constraint, it is possible that the

optimal bed allocation will allocate more beds

to departments whose patients’ waiting cost

and rejection cost are higher and the nursing

cost is lower. An extreme case is that some

departments will not be allocated beds at all.

With the equity-of-access constraint, such a so-

lution will be infeasible, and the admission rate

among all departments will not be far too dif-

ferent. See more details of the impact of δ in

Gong et al. (2022). Finally, the optimization of

inpatient bed allocation can be formulated as

min
J,{Γ1 ,··· ,ΓJ },
{n1 ,··· ,nI },
{o1 ,··· ,oJ }

{
lim
t→∞

1

t

∑
i∈I

(
CR

i Ri(t) + CW
i Wi(t))

+

∑
i∈I
ξi
⌈
ϕ · ni

⌉
+

∑
j∈J
ξΓ j

⌈
ϕ · o j

⌉⎫⎪⎪⎬⎪⎪⎭
(1)

s.t. ∑
i∈I

ni +
∑
j∈J

o j � B (2)

lim
t→∞(Pi(t) − Ph(t)) ≤ δ, ∀i , h ∈ I (3)

ni , o j ∈ N, ∀i ∈ I, j ∈ J (4)

J ∈ I (5)

Note that limt→∞ 1
t
∑

i∈I
(
CR

i Ri(t) +

CW
i Wi(t)

)
is equivalent to the expectation of

sum of patients’ waiting costs and rejecting

costs per time unit, and limt→∞(Pi(t)−Ph(t)) is

equivalent to the expectation of admission rate

difference, in the steady state of the queueing

network. They both need to be estimated

by running a simulation model in finite time

for certain replications and calculating the

average over replications. To summarize, the

objective (1) is to minimize the total cost per

time unit, which consists of the expectation

of the sum of patients’ waiting costs and

rejecting costs per time unit, the nursing cost

of all dedicated beds per time unit, and the

nursing cost of all shared beds per time unit.

The constraint (2) states the total number
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of inpatient beds to be allocated, constraint

(3) means the expectation of admission rate

difference among all departments should not

exceed a certain level, constraint (4) means the

number of dedicated beds for each depart-

ment and the number of shared beds for each

cluster are natural numbers (including 0), and

constraint (5) means the number of clusters is

an integer between 1 and the total number of

departments.

As emphasized before, the above specific

problem and model are directly from Gong

et al. (2022) and are used to illustrate what kind

of inpatient bed allocation problems we are fo-

cusing on. The proposed algorithm is not es-

pecially customized for this specific problem.

And as demonstrated later, it performs fairly

well for a variety of problems including this

one without particular parameter tuning. So

it is convincing that the proposed algorithm is

capable for more general inpatient bed alloca-

tion problems under CO configuration where

the objective and (some) constraints need to be

evaluated via stochastic simulation. For exam-

ple, one may consider different structures and

admission/operation rules of healthcare sys-

tems, different patient related issues (e.g., de-

terioration during waiting), and even different

objective(s) or constraint(s). The performance

of our proposed algorithm should still be sat-

isfying.

4. ESB&B and Adaption to Inpatient
Bed Allocation

We first summarize the original ESB&B algo-

rithm proposed in Xu (2009) and Xu and Nel-

son (2013), and then a modest improvement for

the ESB&B algorithm is proposed. After that,

we introduce how to adapt the ESB&B algo-

rithm to the inpatient bed allocation problems

under CO configuration.

4.1 Original ESB&B Algorithm

The original ESB&B algorithm proposed in Xu

(2009) and Xu and Nelson (2013) aims to solve

the discrete simulation optimization problems

maxx∈X E[Y(x)], where X is the intersection of

the integer lattice Zd with a closed set in Rd ,

and |X| < ∞, where | · | denotes the cardinality

of a set. Note that E[Y(x)] cannot be analyti-

cally calculated, and it can only be estimated

via i.i.d. observations of random variable Y(x)
via expensive stochastic simulation, which are

denoted as Y1(x),Y2(x), · · · . The detailed steps

of the original ESB&B algorithm are presented

in Algorithm 1.

Partition means diving a region into a

group of smaller non-empty subregions that

are mutually exclusive and collectively exhaus-

tive. In the original ESB&B algorithm, the di-

mension (or more precisely, coordinate axis)

with the maximal span is selected, and the re-

gion is divided into ω (a predetermined value)

approximately even parts by cuts perpendic-

ular to that dimension, which is subject to

the rounding issue (see more details in on-

line Appendix A of Xu and Nelson (2013)).

We refer to such a partitioning strategy as the

maximal edge partitioning strategy. In iter-

ation k ≥ 1, the number of solutions to be

sampled from each subregion that does not

belong to the record set, i.e., θ(XP) for each

XP ∈ Pk\{Rk} is randomly determined based

on the previous information. In particular,

{θ(XP) : XP ∈ Pk\{Rk}} is a random sam-

ple from a multinomial distribution with ϑO
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Algorithm 1 Original ESB&B Algorithm

Step 0 Initialization.

Set iteration counter k � 0, initial partition

P0 � {X}, and record set R0 � X.

Step 1 Partitioning:

If the record set Rk is not a singleton,

construct a partition of the record set,

P′′
k (Rk), and define the new full partition

by P′
k �

(
Pk\{Rk}

) ⋃P′′
k (Rk); otherwise, set

P′′
k (Rk) � {Rk} and P′

k � Pk .

Step 2 Bounding.

2.1. Solution sampling: For each subregion

XP ∈ P′′
k (Rk), randomly and uniformly sam-

ple ϑR solutions. If k > 0, for subregion

XP ∈ Pk\{Rk} randomly and uniformly sam-

ple θ(XP) solutions, where θ(XP)depends on

the observations at solutions inSk−1. Aggre-

gate all of the sampled solutions into a set, Sk .

If k > 0, letSk �Sk−1 ∪ Sk ; else letSk � Sk .

2.2. Bound estimation: Simulate ΔnF ob-

servations from each solution in Sk that

has not been encountered before and simu-

late ΔnA additional observations from each

solution that has been encountered before.

For subregion XP ∈ P′
k , set ηk+1(XP) �

maxx∈XP∩Sk Ȳ(x), where Ȳ(x) is the cumu-

lative sample mean of all observations at so-

lution x.

Step 3 Updating partition and record set.
Update the record set Rk+1 �

argmaxXP∈P′
k
ηk+1(XP) and partition

Pk+1 � P′
k . Set k � k + 1 and go to Step 1.

trials and success probabilities ρ � {ρ(XP) :

XP ∈ Pk\{Rk}}, where ϑO ∈ Z+ is predeter-

mined and ρ is calculated based on the obser-

vations at solutions inSk−1. TheSk is a set of

all solutions that have been sampled through

iteration k. The intuition behind the calcu-

lation of ρ is to sample more solutions in a

subregion with better potential, which is im-

portant to the finite sample performance of

the algorithm. Also note that the choice of

ρ will not affect the convergence of the algo-

rithm as long as all elements of ρ are bounded

away from zero. Xu and Nelson (2013) con-

sider several strategies and find from numeri-

cal experiments that the probability-based allo-

cation using normal distribution performs bet-

ter. Here we summarize this strategy without

derivation details. For each XP ∈ Pk\{Rk}, let

η∗ � maxx∈XP∩Sk−1 Ȳ(x) be the optimal value

through iteration k, m � |XP ∩ Sk−1 | be the

total number of solutions in the subregion that

have been sampled and simulated through it-

eration k. The sample mean and sample vari-

ance of all solutions in the subregion are de-

noted as Ȳ � m−1
∑

x∈XP∩Sk−1 Ȳ(x) and S2
Y �

(m − 1)−1
∑

x∈XP∩Sk−1(Ȳ(x) − Ȳ)2, respectively.

Let S2
P � v−1

∑
x∈XP∩Sk−1

∑n(x)
s�1

(
Ys(x) − Ȳ(x))2

the pooled sample variance within the sub-

region, where v �
∑

x∈XP∩Sk−1(n(x) − 1) and

n(x) denotes the total number of observa-

tions obtained at x. Also, define the effc-

tive degrees of freedom n∗ such that 1/n∗ �

m−2
∑

x∈XP∩Sk−1 1/n(x). If m < |XP |, calculate

quantiles α1 and α2 that solve

t1−α1 ,m−1 � t1−α2 ,v

�
η∗ − Ȳ

SY
√

1 + (1/m) +
(
Sp/

√
n∗
)

and let p(XP) � α1 + α2; otherwise calculate

α(x) that solves

t1−α(x),n(x)−1 �
η∗ − Ȳ(x)
SP/

√
n∗

and let p(XP) � maxx∈XP∩Sk−1 α(x). Let

T �
∑

XP∈Pk\{Rk } max
{
ε, p(XP)}, where ε is

a predetermined constant that 0 < ε � 1.
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For each XP ∈ Pk\{Rk}, calculate ρ(XP) �

max
{
ε, p(XP)} /T.

The ESB&B algorithm summarized above

is globally convergent under mild condi-

tions. Specifically, assume |E[Y(x)]| < ∞
and Var(Y(x)) < ∞ for all x ∈ X. Denote

X∗ � arg maxx∈X E[Y(x)]. Then with prob-

ability one, there exists an iteration number

k0 such that for all k ≤ k0, the record sets

Rk produced by the ESB&B algorithm sum-

marized above are singletons and Rk ⊆ X∗.
It is worth mentioning that the ESB&B algo-

rithm does not actually prune any subregion,

since there are no exact upper bound and lower

bound for each subregion but the estimated

ones. If one prunes some subregions based

on the estimated upper and lower bounds,

s/he will have some probability that mistak-

enly prunes the subregions containing X∗, in

which case the asymptotic convergence will no

longer hold. Instead, the ESB&B algorithm in-

herits the spirit of B&B methods by dividing

the feasible region into smaller and smaller

subregions and allocating the sampling bud-

get according to the potential (i.e., estimated

bounds) of the subregions.

For subregions whose estimated bounds

show that they are inferior, although they are

not pruned directly, their probability of being

sampled in the future will be smaller than other

subregions. Note that the convergence analy-

sis holds for a variety of partitioning strategies

and solution sampling strategies. However,

it can be anticipated that the choice of parti-

tioning strategy and solution sampling strat-

egy will affect the finite sample performance

of the ESB&B algorithm. Xu and Nelson (2013)

consider the maximal edge partitioning strat-

egy for simplicity. However, such a strategy

is static and its performance may not be the

best. Intuitively, a partitioning strategy that

incorporates the previous sampling informa-

tion should be better than such a static strategy,

since it can locate the most promising subre-

gions more efficiently. Besides, Xu and Nelson

(2013) consider sampling ϑR solutions for each

subregion of the partition of the record set and

sampling ϑO solutions among all subregions

that do not belong to the record set according

to the multinomial distribution. For the sub-

regions of the partition of the record set, the

sampling budget is simply fixed, and it may be

improved by also considering the potential of

each subregion.

4.2 A Modest Improvement for ESB&B

As mentioned above, we consider improving

the finite sample performance of the original

ESB&B algorithm by adopting an adaptive par-

titioning strategy and a global solution sam-

pling strategy. We call the ESB&B algorithm

with such Adaptive partitioning strategy and

Global solution sampling strategy ESB&B-AG

algorithm. Since the new partitioning strat-

egy and solution sampling strategy are still in

the analysis framework of the asymptotic con-

vergence, the established global convergence

of the original ESB&B algorithm still holds for

the ESB&B-AG algorithm.

4.2.1 Adaptive partitioning strategy

In the original ESB&B algorithm, the maxi-

mal edge partitioning strategy is used to cut

the record set into ω parts, which only con-

siders the geometric feature of the record set

and does not utilize the previous sampling in-

formation. Inspired by the work of Lu et al.
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(2021), we adopt the following adaptive parti-

tioning strategy. Consider a general record set

R that is represented as follows:

hj(x) ≤ b j , j � 1, · · · , q
li ≤ xi ≤ ui , i � 1, · · · , d
xi , li , ui ∈ Z, i � 1, · · · , d

We consider all the possible partitions that

divide R into ω � 2 parts using cuts perpen-

dicular to one coordinate axis). Specifically,

define set {Rwk , R′
wk} for k � 1, · · · , uw − lw ,

w � 1, · · · , d, such that Rwk is represented as

hj(x) ≤ b j , j � 1, · · · , q
li ≤ xi ≤ ui , i � 1, · · · , d and i � w

li ≤ xi ≤ li + k − 1, i � w

xi , li , ui ∈ Z, i � 1, · · · , d

and R′
wk is represented as

hj(x) ≤ b j , j � 1, · · · , q
li ≤ xi ≤ ui , i � 1, · · · , d and i � w

li + k ≤ xi ≤ ui , i � w

xi , li , ui ∈ Z, i � 1, · · · , d

Define a set P which is a collection of all

the sets {Rwk , R′
wk} such that Rwk ∩ S � ∅

and R′
wk ∩ S � ∅, where S denotes the set

of all sampled solutions right before the par-

tition. Note that P will be nonempty as long

as |R ∩S | ≥ 2. Then, the adaptive partition-

ing strategy chooses the partition inP that the

most similar solutions are likely to be grouped

together. Mathematically, the final chosen par-

tition is

argmin
P′′(R)∈P

∑
XP∈P′′(R)

∑
x∈XP∩S

(Ȳ(x) − Ȳ)2

which can be simply solved by enumeration,

since |P| is linear to the dimensionality d.

Compared with the static maximal edge par-

titioning strategy, such adaptive partitioning

strategy tends to construct subregions wherein

inferior solutions and superior solutions clus-

ter respectively, so that the subregion with a

cluster of inferior solutions can be less likely

sampled while the subregion with a cluster of

superior solutions can be more likely sampled

in the future.

4.2.2 Global solution sampling strategy

In the original ESB&B algorithm, ϑR solu-

tions are sampled in each subregion XP ∈
P′′

k (Rk), and ϑO solutions are sampled among

all subregions that do not belong to the record

set according to the multinomial distribution,

where the probability in each subregion is de-

termined by its potential estimated via obser-

vations in it. Intuitively speaking, for subre-

gion XP ∈ P′′
k (Rk) it should be beneficial if the

sampling budget is also allocated based on its

potential instead of simply fixed. Recall the

strategy of constructing the multinomial sam-

pling distribution for subregions that do not

belong to the record set described in Section

4.1. It is clear that same method can be applied

to XP ∈ P′′
k (Rk) to calculate p(XP). So, it is

totally workable if one considers allocating the

ωϑR+ϑO solution sampling budget globally to

the entire subregions in P′
k . In particular, after

calculating p(XP) for each XP ∈ P′
k , one now

needs to define T �
∑

XP∈P′
k
max

{
ε, p(XP)}

and calculate ρ(XP) � max
{
ε, p(XP)} /T for

each XP ∈ P′
k . Then, let {θ(XP) : XP ∈ P′

k} be

a random sample from a multinomial distribu-

tion with ωϑR + ϑO trials and success proba-

bilities ρ � {ρ(XP) : XP ∈ P′
k}, and randomly

and uniformly sample θ(XP) solutions for sub-

region XP ∈ P′
k . Note that in iteration 0, since
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no solution has been sampled, one can simply

let ρ(XP) � 1/|P′
k |. Using such a global so-

lution sampling strategy may help the ESB&B

algorithm to concentrate more on subregions

that have higher potential estimated from pre-

vious observations, which may increase the ef-

ficiency when searching for a better solution.

The detailed steps of the improved ESB&B

algorithm, i.e., ESB&B-AG algorithm, is pre-

sented in Algorithm 2.

4.3 Adaption to Inpatient Bed Allocation

As discussed in the introduction, the inpatient

bed allocation problems under CO configura-

tion are combinatorial optimization problems

where the objective function and (some) con-

straints need to be estimated via expensive and

noisy stochastic simulation. The dimension-

ality of the feasible solution varies when the

number of clusters varies. For the ESB&B al-

gorithm, although the theoretical analysis does

not restrict the form of the feasible region, the

original ESB&B in Xu (2009) and Xu and Nelson

(2013) is designed for the feasible region that

is the intersection of the integer lattice Zd with

a closed set in Rd . Therefore, some adaption is

required in order to make the original ESB&B

algorithm or the improved ESB&B-AG algo-

rithm applicable to the inpatient bed allocation

problems under CO configuration. Moreover,

how to efficiently sample solutions uniformly

in the feasible region is also an issue to be ad-

dressed, since now the region is no longer sim-

ply a hypercube with linear constraints.

4.3.1 Two-layer branches

Note that the dimensionality of the feasible so-

lution will be fixed once the number of clusters

is fixed. So, a natural idea is to consider the

Algorithm 2 ESB&B-AG Algorithm

Step 0 Initialization.

Set iteration counter k � 0, initial partition

P0 � {X}, and record set R0 � X. LetS0 � ∅.

Step 1 Partitioning:

If the record set Rk is not a singleton:

(a) If |Rk ∩Sk | ≥ 2, apply the adaptive par-

titioning strategy to construct a partition

of the record set, P′′
k (Rk);

(b) otherwise, apply the maximal edge par-

titioning strategy with ω � 2 to con-

struct P′′
k (Rk).

And define the new full partition by

P′
k �

(
Pk\{Rk}

) ⋃P′′
k (Rk). Otherwise, set

P′′
k (Rk) � {Rk} and P′

k � Pk .

Step 2 Bounding.

2.1. Solution sampling: For each subregion

XP ∈ P′
k , randomly and uniformly sample

θ(XP) solutions, where θ(XP) is determined

as described in Section 4.2.2. Aggregate all of

the sampled solutions into a set, Sk . If k > 0,

letSk �Sk−1 ∪ Sk ; else letSk � Sk .

2.2. Bound estimation: Simulate ΔnF ob-

servations from each solution in Sk that

has not been encountered before and simu-

late ΔnA additional observations from each

solution that has been encountered before.

For subregion XP ∈ P′
k , set ηk+1(XP) �

maxx∈XP∩Sk Ȳ(x), where Ȳ(x) is the cumu-

lative sample mean of all observations at so-

lution x.

Step 3 Updating partition and record set.
Update the record set Rk+1 �

argmaxXP∈P′
k
ηk+1(XP) and partition

Pk+1 � P′
k . Set k � k + 1 and go to Step 1.
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two-layer branches as follows. For the inpa-

tient bed allocation problems under CO con-

figuration, denote its feasible region as X. Re-

call that the total number of departments is I.

Initially, the feasible region X is divided into

I − 1 parts, wherein the number of clusters J

is 1, · · · , I − 1, respectively. Note that there is

no need to explicitly consider the subregion

wherein the number of clusters is 0 or I, be-

cause such a case means the fully dedicated

configuration, which is contained in the subre-

gion wherein the number of clusters is 1 and

the number of shared beds for cluster 1 is 0. All

the future partitions are within these I −1 sub-

regions, which can ensure that the dimension-

ality in each subregion is consistent. It is like

that we predetermine the first-layer branches

(which are the branches directly from the root

node X, and only let the algorithm adaptively

determine the branches under this layer. In

practice, one only needs to let the partition of

the record set R0 � X, i.e., P′′
0
(R0), be exactly

the collection of the aforesaid I−1 parts in iter-

ation 0, and in the later iterations the partition

is normally conducted as described before.

4.3.2 Structure of solutions

When the number of clusters is fixed, the

solution can be explicitly written. For ex-

ample, suppose I � 3 and given that the

number of clusters is 2, then a feasible (only

in terms of the maximal number of inpa-

tient beds) solution can be written as x �

(x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8) such that
∑5

i�1 xi �

B, where x1 , x2 , x3 denote the number of ded-

icated inpatient beds for departments 1, 2 and

3 respectively, x4 , x5 denote the number of

shared inpatient beds in clusters 1 and 2 re-

spectively, and x6 , x7 , x8 denote how the 3 de-

partments are partitioned into 2 clusters. For

(x6 , x7 , x8) there are a variety of expression

forms. One simple way is to assign integers

to (x6 , x7 , x8) to indicate to which cluster a de-

partment belongs. For example, (x6 , x7 , x8) �
(1, 2, 1) means departments 1 and 3 form one

cluster, and department 2 forms one cluster.

Note that when a cluster only contains one

department, the shared beds are actually also

dedicated to that department. Also note that

the above expression will produce duplicated

solutions. For example, (x6 , x7 , x8) � (2, 1, 2)
also means the same partition of departments.

To reduce the feasible solution, such duplica-

tions should be eliminated using some rule.

A simple rule is to assign the cluster numbers

according to the ascending order of the mini-

mal department index in each cluster. Under

such rule, (x6 , x7 , x8) � (2, 1, 2) is not allowed

and (x6 , x7 , x8) � (1, 2, 1) is the unique expres-

sion when departments 1 and 3 form one clus-

ter and department 2 forms one cluster. Be-

sides, to make the expression of the feasible

region easier, other constraints in addition to

the number of inpatient beds are moved to the

objective function. For example, for problem

(1), the hard constraint (3) can be moved to

the objective function with an indicator func-

tion (which returns zero when the constraint is

satisfied and infinity otherwise).

4.3.3 Sampling of solutions

Based on the solution structure described in

Section 4.3.2, to randomly and uniformly sam-

ple a solution in a subregion that is contained

in one of the I − 1 parts defined in Section 4.3.1

involves two steps. The first step is to sam-

ple the bed allocation to each department and

each cluster, subject to the constraints on each
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number and the total number. The acceptance-

rejection technique is the most straightforward

choice for such a purpose. However, in this

case, the acceptance rate may be unaccept-

ably low. We adopt the Dirichlet-rescale (DRS)

algorithm proposed in Griffin et al. (2020),

which can randomly and uniformly generate

a d-dimensional vector u � (u1 , · · · , ud) that∑d
i�1 ui � U and li ≤ ui ≤ ui , i � 1, · · · , d, for

given li , ui and U with high efficiency. Round-

ing is required since the number of inpatient

beds is an integer. After rounding, the summa-

tion of the integers may be not equal to B. We

simply do the following. If the summation ex-

ceeds B, then randomly pick a positive element

and decrease it by one; repeat until the sum-

mation equals B. Otherwise, randomly pick

an element that could be positive or zero and

increase it by one; repeat until the summation

equals B. The second step is to sample the par-

tition of departments under a given number of

clusters, say I′ ∈ {1, · · · , I − 1}. To ensure effi-

ciency, a random permutation of the depart-

ment indices 1, · · · , I is generated and then

I′ − 1 cuts are randomly added to divide the

index sequence into I′ non-empty parts. After

that, the rule of assigning the cluster numbers

as described in Section 4.3.2 is applied to deter-

mine the values of the corresponding elements

in the solution.

5. Numerical Experiments

The purpose of this section is twofold. The

first purpose is to investigate the range of ap-

plications of the ESB&B and ESB&B-AG algo-

rithms compared with the SMA of Gong et al.

(2022). Recall that the SMA is highly cus-

tomized for the specific inpatient bed alloca-

tion problem (1), so it will be anticipated that

SMA is not suitable for other discrete simula-

tion optimization problems. This is to be ver-

ified via numerical experiments. On the other

hand, since the ESB&B and ESB&B-AG algo-

rithms are designed for general discrete sim-

ulation optimization problems, whether they

indeed perform fairly well for a variety of prob-

lems including inpatient bed allocation prob-

lems is also to be verified. The second purpose

is to compare the performance of the ESB&B-

AG algorithm with the original ESB&B algo-

rithm to show the practical value of the im-

provement proposed in this paper. Through-

out the numerical experiments, both ESB&B

and ESB&B-AG algorithms are implemented

in Python with ω � 2, ΔnF � 10, ΔnA � 2,

ϑR � 10, ϑO � 20, ε � 0.1; the exactly same

implementation of SMA with the same param-

eters as in Gong et al. (2022) is used. Since

the SMA adopts a GA framework in its outer

layer, we also try the basic GA, where binary

encoding is employed with a population size

of 50, the crossover probability is 0.9, and the

mutation probability is 0.005 as suggested in

Schaffer et al. (1989), and for each solution in

the population 5 observations are simulated

in each iteration. Note that the ESB&B is

originally defined for a maximization problem

while the SMA is for a minimization problem.

Also note that a maximization problem can be

easily transformed to a minimization problem

by adding a negative sign, and vice versa. So in

the following, we will implicitly do such trans-

formation without specific mention.
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Figure 2 The Miller and Shaw Function in Two Dimensions

5.1 Results for Synthetic Problems

The first test problem is exactly from Xu (2009)

and Xu and Nelson (2013) that originally pro-

pose the ESB&B algorithm, which is a modifi-

cation of the multimodal function F2 used in

Miller and Shaw (1996). Specifically, consider

min
(x1 ,x2)∈X

−sin6 (0.05πx1)
22((x1−10)/80)2 − sin6 (0.05πx2)

22((x2−10)/80)2 (6)

where X � Z2 ∩ [0, 100]2, and the objective

function is observed with normally distributed

noises with mean of 0 and a standard devia-

tion of 0.3. This problem has a global optima

(10, 10) with the objective value of −2. The re-

sponse surface is bumpy with 25 local optimal,

which is shown in Figure 2. It is a challeng-

ing test problem for simulation optimization

algorithms.

The second test problem is to minimize

the Griewank function, which is adapted from

Salemi et al. (2019). Specifically, consider

min
(x1 ,...,xd )∈X

d∑
i�1

x2
i

4000
−

d∏
i�1

cos

(
xi√

i

)
+ 1 (7)

where X � Zd ∩ [−50, 50]d , and the objective

function is observed with normally distributed

noises with a mean of 0 and a standard devia-

tion of 0.1. This problem has a global optima

(0, · · · , 0) with the objective value of 0. It also

has multiple local optima and it is a commonly

used test problem for optimization algorithms.

Figures 3 and 4 show the performance of

GA, SMA, original ESB&B, and ESB&B-AG for

the Miller and Shaw problem and Griewank

problem with d � 3, respectively. Each curve is

the average of 50 repetitions of each algorithm,

and the horizontal axis is the sample size, i.e.,

the number of noisy observations of the ob-

jective function. Several conclusions can be

drawn from the results. First, both ESB&B and

ESB&B-AG algorithms perform fairly well in

two problems, while the performance of SMA

is less satisfying. For the Miller and Shaw prob-

lem, SMA quickly finds good solutions in the

early stage but does not improve too much af-

terward. For the Griewank problem, the per-

formance of SMA is worse and it behaves just

like the basic GA. It seems like some features in

SMA that are highly customized for problem
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Figure 3 Performance of GA, SMA, ESB&B, ESB&B-AG for the Miller and Shaw Problem

Figure 4 Performance of GA, SMA, ESB&B, ESB&B-AG for the Griewank Problem

(1) do not work for these general simulation

optimization problems. Second, the ESB&B-

AG evidently outperforms the original ESB&B

on the two problems.

It is desirable to establish the complexity

of the algorithm. For deterministic optimiza-

tion algorithms, it is sometimes possible to

derive the computation complexity. But for

simulation optimization algorithms, deriving

the computation complexity is both impossi-

ble (since the computation in the algorithm

is too complicated) and unnecessary (since

the most time-consuming part is running the

simulation model). So, a more reasonable

and practical metric is the sample complexity,

where one sample means running the simula-

tion model once to obtain one noisy observa-

tion. In particular, one can consider the sam-
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Table 1 Average Sample Size of Different Algorithms for the Griewank Problem

d � 1, N1 � 20000 d � 2, N2 � 40000 d � 3, N3 � 100000

exact opt. near opt. exact opt. near opt. exact opt. near opt.

GA
673

(4 failed)
442

17500

(27 failed)
6211

12000

(29 failed)

23145

(5 failed)

SMA 571 60
6388

(9 failed)
1170

–

(30 failed)
44460

ESB&B 1666 933 23166 4749 53245 24799

ESB&B-AG 1358 798 15526 3931 29345 11801

ple size required by a simulation algorithm to

reach a certain level of solution accuracy; see

for example Zhang et al. (2023ab). We con-

duct some numerical experiments to compare

the sample size of different algorithms for the

Griewank problem with varying dimensions.

More specifically, for d � 1, 2, 3, each algorithm

is run until reaching the exact optimum (which

means the found solution is the true global op-

tima) or near optimum (which means the true

function value of a found solution is smaller

than 0.1 while the true global optimum is 0).

The algorithm will also stop if the sample size

reaches the limit Nd , which is denoted as a fail-

ure.

At each solution accuracy level, each al-

gorithm is repeatedly run 30 times, and the

results are reported in Table 1. The average

sample size is computed among the successful

replications. If the number of failures among

30 replications is larger than 0, it is also re-

ported (shown in parentheses). When the

number of failures is 30, the average sample

size is not defined (denoted with – ). It can

be observed that when d � 1, the sample size

of SMA is the lowest at each solution accu-

racy level, which means its sample efficiency

is the highest without being trapped in the

local optimum. GA has the second highest

sample efficiency, however, it fails sometimes

to find the global optimum. However, as d

increases (which means the problem becomes

more difficult), the performance of SMA de-

teriorates largely. For d � 2, it has a large

probability of being trapped in the local opti-

mum; while for d � 3, it can not find the global

optimum among 30 replications, and its sam-

ple efficiency becomes the lowest for finding

the near optimum. GA also deteriorates sim-

ilarly. In contrast, both ESB&B and ESB&B-

AG perform robustly in all cases. They can al-

ways find the global optimum, and the sample

size becomes more competitive at each solu-

tion accuracy level when the problem becomes

more difficult. Moreover, ESB&B-AG consis-

tently outperforms ESB&B in terms of sample

size.

All the above numerical results show that

SMA is not suitable for general simulation op-

timization problems, since it is highly cus-

tomized for a specific inpatient bed allocation

problem. It may find some good solution

quickly at early stage, but may get trapped in

some local optimum, since there is no theoreti-

cal guarantee of global convergence for it. The

plain GA performs worse than SMA without

particular parameter tuning. Both ESB&B and

ESB&B-AG perform fairly well without par-
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Table 2 Department-Related Parameters

Department i λi μi CR
i CW

i ξi Di

Cardiac surgery 1 3.28 21.79 4350.58 579.80 196.5 10

Minimally invasive surgery 2 3.53 2.54 503.45 289.90 192.4 6

Gastrointestinal surgery 3 7.85 12.67 2557.33 434.85 200.1 10

Ophthalmology 4 6.98 4.36 869.47 289.90 167.6 6

Burns surgery 5 2.07 15.56 3095.00 579.80 193.3 4

ticular parameter tuning, since they are not

highly customized algorithms and have the-

oretical convergence property.

5.2 Results for Inpatient Bed Allocation
Problem

We now investigate the practical performance

of the ESB&B-AG algorithm on inpatient bed

allocation problems under CO configuration.

The problem (1) of Gong et al. (2022) is used as

an illustrative example. Specifically, the prob-

lem instance is exactly from Gong et al. (2022),

which is based on real data collected from a

public hospital in Shanghai, China. In this

problem instance, the time unit is day, there

are I � 5 departments with B � 240 beds to

allocate, and the related parameters are pre-

sented in Table 2. Each ξi is the sum of the

average daily wage of nurses in Shanghai ξW

(146.2 RMB) and the training cost amortized

into one day, which is denoted as ξT
i . For the

5 departments, ξT
i equals 50.3, 46.2, 53.9, 21.4,

and 47.1 RMB, respectively. Then the ξΓ j is

set as ξΓ j � (1 + 0.1 × (|Γ j | − 1))ξW +
∑

i∈Γ j
ξT

i .

For fi and gi , i � 1, · · · , 5, empirical distribu-

tions that are constructed from real data are

used. Moreover, ϕ � 0.25, and δ � 0.1. The

exact same implementation of the simulation

model for this problem instance as in Gong

et al. (2022) is used. When estimating the ob-

jective function in (1) and the constraint (3),

we call the output after running the simula-

tion model for 104 days (which balances the

simulation cost and the simulation fidelity) as

one noisy observation (i.e., one sample). And

we will replicate the simulation run indepen-

dently to obtain independent noisy observa-

tions and then the sample average will be cal-

culated for estimation.

Since we have shown that the ESB&B-AG

algorithm outperforms the original ESB&B al-

gorithm, here we only investigate the perfor-

mance of the ESB&B-AG algorithm for the in-

patient bed allocation problem and compare

it with the SMA that is highly customized for

this problem. Since the basic GA is also a gen-

eral optimization algorithm, we also try it in

this case. Note that one important feature of

SMA is that it can find good initial solutions

by utilizing detailed information of the spe-

cific inpatient bed allocation problem. How-

ever, the ESB&B-AG algorithm simply starts

from randomly generated solutions. As a rem-

edy, we let the ESB&B-AG algorithm first solve

the problem within a smaller feasible region

(under WF configuration instead of CO config-

uration). Then after 4 × 104 samples are used,

switch to the original problem (i.e., under CO

configuration) with the so far found solution as

an initial solution. For SMA, SA, and ESB&B-

AG, we run the algorithm until 105 samples

are exhausted and output the final found solu-
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Table 3 Achieved Total Costs when 105 Samples Are Exhausted Using SMA, GA and ESB&B-AG

Algorithm Mean Standard deviation Gap of mean with SMA

SMA 2.95×104 1.7×102 –

GA 3.28×104 3.0×103 11.36%

ESB&B-AG 2.99×104 1.4×102 1.54%

tion. To evaluate the solution quality, run the

high-fidelity simulation model with 106 days

(which is time-consuming and not affordable

during the optimization) at this solution and

record the simulated objective function value

(i.e., the achieved total cost). Each algorithm

is repeated 30 times and the mean and stan-

dard deviation of the achieved total costs are

reported in Table 3. It can be seen that the per-

formance of ESB&B-AG is close to SMA. Given

that ESB&B-AG is a general optimization al-

gorithm while SMA is highly customized, the

performance of ESB&B-AG is fairly good. Note

that also as a general optimization algorithm,

GA has a much larger gap with SMA compared

to ESB&B-AG. Recall that ESB&B-AG also has

stable and satisfying performance on the syn-

thetic problems, there is reason to believe that

ESB&B-AG will also perform well on other in-

patient bed allocation problems (e.g., when the

objective, constraints, and/or operation rules

of the healthcare system are different to those

in problem (1)).

6. Conclusions

In this paper, we propose to use the improved

ESB&B algorithm (i.e., ESB&B-AG algorithm)

to solve the inpatient bed allocation problems

under CO configuration where the objective

function and (some) constraints need to be esti-

mated via expensive and noisy stochastic simu-

lation. Compared to the SMA which is a highly

customized heuristic algorithm for one spe-

cific inpatient bed allocation problem, the orig-

inal ESB&B algorithm and the ESB&B-AG al-

gorithm are theoretically convergent and suit-

able for relatively general problems, and the

performance of the ESB&B-AG algorithm on

the inpatient bed allocation problem for which

SMA is customized is close to SMA. It pro-

vides practitioners with a good choice when

solving a real inpatient bed allocation problem

that is not identical to the one for which SMA

is customized. A possible direction to extend

this paper is to improve or modify the original

ESB&B algorithm more substantially for better

solving combinatorial simulation optimization

problems. For example, pruning the inferior

branches is a core idea for classical B&B frame-

work, but how to inherit it in ESB&B while

still guarantee the global convergence is still

an open question.
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