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Abstract. The inpatient bed allocation that allows beds shared among different departments is an important
and challenging problem for a healthcare system. When the objective function(s) and (some) constraints
need to be estimated via expensive and noisy stochastic simulation, a simulation optimization algorithm
is required to solve this problem. In literature, there is a heuristic algorithm highly customized for one
specific inpatient bed allocation problem, and it performs quite well on that problem. However, its lack
of theoretical convergence and high specialization may not give practitioners enough confidence to apply
it on real inpatient bed allocation problems. To mitigate such issues, this paper proposes to use the
empirical stochastic branch-and-bound (ESB&B) algorithm, which is theoretically convergent and suitable
for relatively general problems. A modest improvement for the original ESB&B algorithm is made and how
to adapt the ESB&B algorithm to inpatient bed allocation problems is presented. Numerical experiments
reveal the generality and fairly satisfying performance of the ESB&B algorithm, and the superiority of the

improved ESB&B algorithm over the original one.

Keywords: Healthcare management, resource sharing, bed allocation, simulation optimization, empirical
stochastic branch-and-bound (ESB&B)

1. Introduction due to the complexity of the healthcare sys-
tem and the multiple objectives and constraints
The number of inpatient beds is the most fun-  that need to be considered. A healthcare sys-

damental measure of capacity for a healthcare  tem, which can be viewed as an integrated and

system (Green 2004), since it can not be ar-
bitrarily increased without matching the re-
sources of staff, facilities, space, etc. The insuf-
ficiency of inpatient beds will often cause con-
gestion in upstream departments (or wards)
and lead to long waiting time of patients. So,
how to optimally allocate the limited inpatient
beds among different departments is an impor-

tant issue. However, it is also a difficult issue

adaptive set of people, processes and products,
is a typical complex service system (Tien and
Goldschmidt-Clermont 2009). Patients arrive
at the healthcare system, flow among differ-
ent departments, and depart after service com-
pletion or waiting too long, forming a com-
plicated queueing network (Bhattacharjee and
Ray 2014).

queueing-related performance (such as utiliza-

Only to effectively evaluate the
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Figure1 An Example of CO Configuration of 25 Inpatient Beds among 4 Departments

tion of inpatient beds and waiting time of pa-
tients) under a specific inpatient bed allocation
scheme (without actually trying it in the real
system) is already a challenging problem. One
may consider simplifying the queueing net-
work by imposing some assumptions so that
closed-form expressions for interested perfor-
mance exist, suffering from the gap between
the model and the reality. Alternatively, one
can resort to simulation that ensures high fi-
delity but is time-consuming. Oftentimes, the
decision makers also have to consider many
other objectives or constraints in addition to
the basic queueing-related performance when
optimizing the inpatient bed allocation, e.g.,
profitability, quality, patient satisfaction, and
social equity (Porter 2010, Zhou et al. 2018).
Recently, the emerging attention to the
shared (or pooled) inpatient beds among de-
partments further increases the difficulty of
the inpatient bed allocation (Wang et al. 2024).
In the past, each department was allocated a
certain number of dedicated inpatient beds,
which are occupied and used exclusively by it-

self. In such a situation, the decision variables

of the inpatient bed allocation optimization
problem are merely the numbers of inpatient
beds for all departments. Since there are well-
known benefits of resource pooling in many
systems, it is natural to anticipate that shar-
ing (or pooling) some inpatient beds among
departments may reduce congestion and pa-
tients” waiting time. However, the nursing cost
is usually higher when shared inpatient beds
exist, because the shared inpatient beds must
be equipped with nurses who are able to nurse
different types of patients. Therefore, the opti-
mal allocation of inpatient beds may be neither
the fully dedicated configuration nor the fully
shared configuration, but an intermediate one.

In general, one can consider the following
flexible inpatient bed configuration. All the
departments are divided into several (at least
one) clusters, and in every cluster each depart-
ment has some dedicated inpatient beds and
there are some other inpatient beds (that form
a so-called overflow ward) to be shared with
all departments in this cluster. When a pa-
tient arrives, s/he will be assigned a dedicated

inpatient bed in his destination department if
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there are available dedicated beds in that de-
partment; otherwise, s/he will be assigned a
shared inpatient bed in the cluster to which
his destination department belongs given that
there are available shared beds in that cluster.
If all dedicated and shared inpatient beds are
occupied, s/he will wait until her/his waiting
time threshold is reached, in which case s/he
will leave without service (for simplicity, say
this patient is rejected). Such flexible config-
uration is referred to clustered overflow (CO)
configuration in Izady and Mohamed (2021)
and (Gong et al. 2022). Figure 1 shows an ex-
ample of CO configuration with 25 inpatient
beds among 4 departments, wherein two clus-
ters are formed and there are 3 and 4 shared
beds in the two clusters respectively. It is easy
to see that the aforementioned fully dedicated
configuration and fully shared configuration
are just two specific instances of the CO config-
uration. So, if one optimizes the inpatient bed
allocation under the CO configuration, the re-
sult will be better than (or at least the same
as) that in the fully dedicated configuration
or fully shared configuration. However, such
benefits come ata cost. The optimization under
the CO configuration is much more challeng-

ing due to the larger space of feasible solutions.

Undoubtedly, it is quite attractive to both
scholars and practitioners to design an efficient
algorithm that is capable of solving the inpa-
tient bed allocation problem under the CO con-
figuration. There are indeed some attempts in
the literature, but drawbacks or limitations of
the existing approaches make the problem still
unsolved (or at least partially unsolved); see
detailed literature review in Section 2. This pa-

per aims to introduce a general simulation opti-

mization algorithm (named empirical stochas-
tic branch-and-bound or ESB&B for short) for
the inpatient bed allocation problem under the
CO configuration, which has several advan-
tages compared to the existing ones.

The rest of the paper is organized as fol-
lows. Detailed literature review on the existing
approaches for inpatient bed allocation with
sharing and the simulation optimization tech-
nique adopted in the paper is given in Section
2. Section 3 illustrates the general bed allo-
cation problem, and introducing the problem
from Gong et al. (2022) as an example. In Sec-
tion 4, the ESB&B algorithm is introduced with
a modest improvement, then how to adapt the
ESB&B algorithm to the inpatient bed alloca-
tion problems under CO configuration is dis-
cussed. In Section 5, numerical experiments
are conducted to show the generality and fairly
satisfying performance of ESB&B algorithm in
contrast to other algorithms, and the superior-
ity of the improved ESB&B algorithm over the

original one. Finally, Section 6 concludes the

paper.
2. Literature Review

Some researchers have considered configura-
tions that allow shared beds but are less flex-
ible than the CO configuration. Best et al.
(2015) consider a configuration called wing for-
mation (WF), where departments with similar
functions are brought together to form a wing,
sharing inpatient beds. In other words, WF
is a special case of CO in which each depart-
ment has no dedicated inpatient beds. The
optimization objective is defined as the total
expected utility gained from patients and the

main constraint is the total number of inpa-
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tient beds. To evaluate the expected utility
for each cluster, they simplify each cluster to
an M/M/n + M (Erlang-A) queueing model,
i.e., the classical M /M /n queueing model with
exponentially distributed waiting time thresh-
old, for which closed-form expression exists.
Even so, they find that the feasible region is
still too large to afford an exact algorithm to
find the optimal solution (although WEF is al-
ready less flexible than CO). They reduce the
feasible region by imposing the restriction that
clusters are formed by making cuts in a fixed
sequence of the departments, and then a dy-
namic programming (DP) approach is used to
find the exact optimal solution. Bekker et al.
(2017) consider a configuration called earmark-
ing (EAR), where each department has ded-
icated beds and all departments share some
beds. In other words, EAR is a special case
of CO that there is only one cluster. However,
they do not consider the issue of optimizing
the inpatient bed allocation under EAR config-

uration.

Izady and Mohamed (2021) first consider
the general CO configuration. They propose
two formulations for the inpatient bed alloca-
tion under CO configuration. The first one is
the total cost minimization (TCM) formulation,
which seeks to minimize the total expected
daily costs of rejected patients and nursing
teams subject to the total number of inpatient
beds. The second one is the constrained block-
ing minimization (CBM) formulation, which
aims to minimize the total expected number
of rejected patients subject to the total num-
ber of beds and the expected nursing cost
falling below a given threshold. To evaluate

the objective functions, they simplify the prob-

lem by imposing assumptions that (i) patients
arrive following the Poisson process; (ii) the
length of stay once admitted is exponentially
distributed; and (iii) the waiting time thresh-
old is zero, then the approximation method is
adopted. They also restrict the clusters to cuts
of a fixed sequence of the departments as in
Best et al. (2015), in order to reduce the feasible
region. The TCM formulation is solved us-
ing DP approach and conjugate direct orthog-
onal shift (CDOS) heuristic, while the CBM
formulation is solved using an integer linear
programming approach adapted with CDOS

heuristic and enumeration.

Gong et al. (2022) revisit the general CO
configuration and try to solve it in a more real-
istic setting. In particular, they do not impose
assumptions on the distributions of patients’
interarrival times and length of stay. The op-
timization objective is defined as the weighted
total cost of rejecting patients, holding pa-
tients waiting, and nursing cost (for dedicated
beds and shared beds). They also consider an
equity-of-access constraint that is important to
public hospitals in China. Both the above ob-
jective and constraint can not be evaluated an-
alytically or even with some fair approxima-
tion. So, an inpatient simulation model is de-
veloped and the optimization is based on the
inputs and outputs of the stochastic simula-
tion, which is known as a simulation optimiza-
tion problem (Fu 2015). Besides, they do not
restrict the feasible region as in Best et al. (2015)
and Izady and Mohamed (2021). These factors
together make their problem quite challeng-
ing to solve. A simulation-based metaheuris-
tic approach (SMA) is proposed to search for

the optimal solution in the entire feasible re-
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gion. In particular, a niching genetic algorithm
(GA) framework is proposed to optimize the
cluster partition, and each partition is evalu-
ated by optimizing the bed allocation through
an adaptive hyperbox algorithm-based local
search. The practical performance of SMA is
quite good as demonstrated in their simulation

experiments.

There are many other studies on the health-
care system that utilize simulation techniques
to deal with the complexity, see Shirazi et al.
(2021) and Ghasemi et al. (2023) for instance.
However, in these studies, simulation models
are not directly used for objective function eval-
uation. Instead, simulation models are run to
produce some input parameters or constraints
for the mathematical model. In the end, the
problems are transformed into classical deter-
ministic optimization problems, and then ex-
act or heuristic methods are designed to solve
the problems. Such simulation techniques are
also used in addressing the complexity of some
disaster occurrences (Khalili-Damghani et al.
2022, Ahmadi Choukolaei et al. 2024). But for
the above mentioned inpatient bed allocation
problem, the simulation is run to evaluate the
objective function and verify the constraint for
a given solution. It is not possible to trans-
form the formulation into deterministic opti-
mization, and the optimization has to be car-
ried out based on the inputs and noisy outputs

of the stochastic simulation.

This paper focuses on general inpatient bed
allocation problems with (a) flexible sharing,
which refers to the CO configuration; (b) realis-
tic queueing network setting, which means the
above objective and some constraints have to

be evaluated via time-consuming simulation.

Among all the literature including those men-
tioned above, to the best of our knowledge, the
SMA of Gong et al. (2022) is the only algorithm
capable for such problems. However, there
are still two drawbacks or limitations in the
SMA. First, the SMA is a heuristic simulation
optimization algorithm, which means there is
no guarantee that the solved solution will con-
verge to the optimal solution when the solving
time (essentially the simulation time) goes to
infinity. Second, the SMA is highly customized
for the specific problem setting considered in
Gong et al. (2022). In other words, when the
setting is changed (no matter the objective, con-
straints, or the operation rules of the healthcare
system), SMA may no longer perform well or
may need adjustment. These two issues will
make a decision maker not confident enough
when applying SMA to real problems that are
not exactly the same as in Gong et al. (2022).

This paper aims to introduce a simulation
optimization algorithm for inpatient bed allo-
cation problems under CO configuration (i.e.,
the most flexible configuration allowing bed
sharing), which mitigates the two issues of
SMA mentioned above. In particular, such
an algorithm needs to be convergent theoreti-
cally, in addition to good performance in finite
time. Besides, it should be suitable for rel-
atively general inpatient bed allocation prob-
lems under CO configuration where the objec-
tive and (some) constraints need to be evalu-
ated via stochastic simulation, including but
not limited to the problem considered in Gong
et al. (2022). In other words, such an algo-
rithm should perform fairly well for a variety
of problems without specific adjustments or

parameter tuning. These two properties may
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reassure the decision makers when applying
the algorithm in real inpatient bed allocation

problems.

Simulation optimization has been a chal-
lenging but active research topic in recent
decades. Depending on the decision variables,
simulation optimization can be mainly clas-
sified as continuous simulation optimization
and discrete simulation optimization, and for
each type various algorithms have been pro-
posed in the literature; see Amaran et al. (2016)
for a review. Apparently, the general inpatient
bed allocation problems under CO configura-
tion (like the one considered in Gong et al.
(2022)) belong to the discrete simulation opti-
mization category. However, many existing al-
gorithms for discrete simulation optimization
problems that are proved to be (locally or glob-
ally) convergent and have satisfying finite sam-
ple performance, e.g., the COMPASS algorithm
of Hong and Nelson (2006) and the GPS algo-
rithm of Sun et al. (2014), are not suitable for
inpatient bed allocation problems. The main
reason is that these discrete simulation opti-
mization algorithms assume that the feasible
region is simply the intersection of the integer
lattice Z¢ with a closed set in R, where the
dimensionality 4 is fixed. Moreover, there is
a well-defined neighborhood structure in the
feasible region, i.e., for two solutions whose
(Euclidean) distance is short their function val-
ues should be close (which is analogous to the
smoothness assumption for a continuous sur-
face). However, for the inpatient bed allocation
problems under CO configuration, the feasible
region is much more complicated. First, a fea-
sible solution consists of how the clusters are

formed, the number of shared beds in each

cluster, and the number of dedicated beds in
each department. Clearly, the dimensionality
of the feasible solution varies when the num-
ber of clusters varies. Second, the distance
(no matter Euclidean distance, Manhattan dis-
tance, or others) between two solutions (even
given that they have the same dimensionality)
does not give any information about the differ-
ence of their function values. For example, by
merely swapping two departments in two clus-
ters, the resulting two solutions tend to have a
small distance, but their function values may
be dramatically different. So, it remains to be
investigated what simulation optimization al-
gorithm is capable of solving the inpatient bed
allocation problems under CO configuration,
which is theoretically convergent and has sat-

isfying finite sample performance.

Essentially, the inpatient bed allocation
problems under CO configuration are combi-
natorial optimization problems where the ob-
jective function and (some) constraints need to
be estimated via expensive and noisy stochas-
tic simulation. Recall that for determinis-
tic combinatorial optimization problems (i.e.,
the objective function and constraints can be
analytically evaluated), the branch-and-bound
(B&B) algorithmic framework is a widely-used
method for producing exact solution (Lawler
and Wood 1966). Norkin et al. (1998a) and
Norkin et al. (1998b) adapt the B&B idea to
stochastic optimization problems and propose
the stochastic B&B (SB&B) method. By assum-
ing that the lower and upper bounds of the
subregions can be estimated more and more
precisely with increasing simulation effort, the
SB&B method is proved to be globally conver-

gent for problems with finite feasible solutions.
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However, for general simulation optimization
problems, there may not exist such bound es-
timators. To make SB&B more practical, Xu
(2009) and Xu and Nelson (2013) propose the
empirical SB&B (ESB&B) algorithm for discrete
simulation optimization, which estimates the
bounds based on the performance of sampled
solutions and is still proved to be globally con-
vergent. Although in Xu (2009) and Xu and
Nelson (2013) they focus on discrete simula-
tion optimization problems where the feasible
region is the intersection of the integer lattice
74 with a closed set in RY, the theoretical re-
sults hold for the arbitrary feasible region as
long as the number of feasible solutions is fi-
nite. Moreover, due to the inherited spirit from
the classical B&B algorithmic framework, we
believe that the ESB&B algorithm can be ex-
tended to the inpatient bed allocation problems
under CO configuration and its finite sample

performance should be fairly satisfying.

The main contributions of this paper are as
follows. First, for general inpatient bed alloca-
tion problems under CO configuration where
the objective and (some) constraints need to
be evaluated via stochastic simulation, we pro-
pose to use ESB&B algorithm, which mitigates
the two drawbacks of the existing SMA algo-
rithm. Second, a modest improvement for the
original ESB&B algorithm is made and how to
adapt the ESB&B algorithm to inpatient bed
allocation problems is presented. The conver-
gence of ESB&B is guaranteed by its theoretical
property and is also reflected in simulation ex-
periments. The generality of ESB&B over a va-
riety of problems is also demonstrated in sim-
ulation experiments, which outperforms the

existing SMA. Moreover, the superiority of the

improved ESB&B algorithm over the original
ESB&B is also observed.

3. Problem Description

Suppose a healthcare system consists of I € Z*
departments and B € Z" inpatient beds. The
decision maker needs to divide the depart-
mentsinto | € Z* clusters, where | < I and one
department can only belong to one cluster. Let
I'={1,---,I}be the set of departments, where
the corresponding index is i (or  sometimes
when necessary). Let ] = {1,---, ]} be the set
of clusters, where the corresponding index is
j. The decision maker also needs to decide the
set of departments that belong to cluster j € J,
which is denoted as I';. In addition to the clus-
ter partition, the decision maker also needs to
determine the number of dedicated beds for
department i € I, which is denoted as n; € N,
and the number of shared beds for cluster j € J,
which is denoted as 0; € N. This paper consid-
ers the following general inpatient bed alloca-
tion optimization problem under CO configu-
ration:

],{rlll}%r,lr,},f(]' Ty, T, ny,-+ 0,01, ,0)
{n1, i},

{o1,,07}
s.t.
S o
i€l jel
-, n1,01," " ,07)

Vke{l,--,K}

gk, Ty, -+, Ty, -

< Ck,
ni,0; €N, Vieljel
Jel

where f represents a general objective func-

tion, whose value given all the decision vari-
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ables needs to be evaluated via stochastic sim-
ulation; gx, k € {1,--- , K} represents K other
performances which need to be controlled un-
der upper bounds ci (note that a lower bound
can be transformed to an upper bound by
adding a negative sign to the performance). It
is possible that some g also needs to be eval-

uated via stochastic simulation.

To show how complicated the problem can
be, we use the same inpatient bed allocation
problem as in Gong et al. (2022) as an illus-
trative example, while emphasizing that our
simulation optimization algorithm is proposed
for more general inpatient bed allocation prob-
lems under CO configuration where the objec-
tive and (some) constraints need to be eval-
uated via stochastic simulation. The key de-
tails of this illustrative problem are summa-
rized as follows. When a patient arrives at the
healthcare system, s /he will have a destination
department. If that department has available
dedicated beds, s/he will be admitted imme-
diately and assigned a dedicated bed in that
department. If dedicated beds are unavailable
but there are available shared beds in the clus-
ter to which that departmentbelongs, s /he will
also be admitted immediately and assigned a
shared bed in that cluster. Otherwise, the pa-
tient needs to wait in line of that department.
When later a dedicated bed (in that depart-
ment) becomes available, it will be assigned
to the waiting patients (in that department)
according to the first-come-first-served (FCFS)
rule. When later a shared bed (in that cluster)
becomes available, it will be assigned to the
waiting patients in that cluster according to a
specific priority rule (specified later). When

a patient’s waiting time reaches his waiting

threshold (i.e., the maximum time s/he is will-
ing to wait), s/he will leave the system imme-
diately without service (i.e., rejected). There
are some additional assumptions to simplify

the problem:

(a) For department i € I, there is only one
type of patients whose destination de-
partment is i (call them type i patients
for short).

(b) For type i € I patients: 1) They arrive
randomly and their interarrival times are
independent and identically distributed
(i.i.d.) random variables with mean 1/A;
and probability density (pdf) f;; 2) They
have the same waiting time threshold D;;
3) Their lengths of stay (i.e., the time
lengths they occupy the inpatient beds)
once admitted arei.i.d. random variables
withmean 1/, and pdf g;, which s irrel-
evant to the inpatient bed type (dedicated
or shared).

(c) The ratio of nurses to beds is a constant
¢, which is the same for any department
and overflow ward. The average nursing
cost per time unit of dedicated beds in
department i € [is &;, and that of shared
bed in cluster j € Jis &r;.

(d) Different types of patients arrive inde-
pendently of each other, and a patient
who finishes service (in either a depart-
ment or an overflow ward) will leave the
system immediately without entering
another department or overflow ward.

(e) The inpatient beds are fully flexible and
their allocation is not limited by anything
else like bed class (e.g., single, double,
etc.) or special requirement (e.g. same

sex or isolation requirement, etc.).
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Let W;(t) denote the total waiting time of
type i € I patients by time f, and R;(¢) the to-
tal number of type i patients rejected. For a
type i € I patient, let C!V denote the cost of
waiting per time unit, and C f{ the cost of being
rejected. For typei € Ipatients, let P;(t) denote
the admission rate by time ¢, which is the ratio
of the number of admitted type i patients to
the number of arrived type i patients by time
t. To ensure the equity of access to different
departments, there is an upper bound 6 > 0
for lim; o (P;(t) — Py(t)) (i-e., the long-run ad-
mission rate difference) for any 7,4 € I. Itisa
hard constraint in the sense that if an inpatient
bed allocation scheme leads to the violation
of lim;_«(Pi(t) — Py(t)) < 6,Vi, h €1, then it
is an infeasible scheme. The priority rule of
assigning a newly available shared bed to the
waiting patients within the same cluster j € J
also accommodates such consideration of eq-
uity of access. In particular, for cluster j € J,
if the equity-of-access constraint is satisfied for
all departments in this cluster (i.e., I';), then
higher priority is given to patient type i € T;
with larger cost saving rate CIW ui; otherwise,
higher priority is given to patient type i € I
with the smallest admission rate P;(t). Once a
patient type is chosen, inside the queue of that
patient type the FCFS rule is still adopted. It
is worth mentioning that the equity-of-access
constraint is useful to ensure fairness when op-
timizing the inpatient bed allocation. Without
such a hard constraint, it is possible that the
optimal bed allocation will allocate more beds
to departments whose patients’” waiting cost
and rejection cost are higher and the nursing
cost is lower. An extreme case is that some

departments will not be allocated beds at all.

With the equity-of-access constraint, such a so-
lution will be infeasible, and the admission rate
among all departments will not be far too dif-
ferent. See more details of the impact of 6 in
Gong et al. (2022). Finally, the optimization of

inpatient bed allocation can be formulated as

1
i lim = CRR;(t) + CWWi(t
i {lm 2 (CIRi) + W)

., , —00 t -
{nl,m,nr/}}, t el
{o1,,01}
+ > &ifpn]+ ) &g o]
iel jel
1)
s.t.

an+ZOj=B 2)

iel jel

thm(Pi(t) —Py(t)) <06, Vi hel 3)
ni,0; €N, Vieljel (4)
Jel ()

Note that limy el Y (chi(t) +
cw Wi(t)) is equivalent to the expectation of
sum of patients’” waiting costs and rejecting
costs per time unit, and lim;_,(P; () — Py (t)) is
equivalent to the expectation of admission rate
difference, in the steady state of the queueing
network. They both need to be estimated
by running a simulation model in finite time
for certain replications and calculating the
average over replications. To summarize, the
objective (1) is to minimize the total cost per
time unit, which consists of the expectation
of the sum of patients’ waiting costs and
rejecting costs per time unit, the nursing cost
of all dedicated beds per time unit, and the
nursing cost of all shared beds per time unit.

The constraint (2) states the total number
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of inpatient beds to be allocated, constraint
(3) means the expectation of admission rate
difference among all departments should not
exceed a certain level, constraint (4) means the
number of dedicated beds for each depart-
ment and the number of shared beds for each
cluster are natural numbers (including 0), and
constraint (5) means the number of clusters is
an integer between 1 and the total number of
departments.

As emphasized before, the above specific
problem and model are directly from Gong
etal. (2022) and are used to illustrate what kind
of inpatient bed allocation problems we are fo-
cusing on. The proposed algorithm is not es-
pecially customized for this specific problem.
And as demonstrated later, it performs fairly
well for a variety of problems including this
one without particular parameter tuning. So
it is convincing that the proposed algorithm is
capable for more general inpatient bed alloca-
tion problems under CO configuration where
the objective and (some) constraints need to be
evaluated via stochastic simulation. For exam-
ple, one may consider different structures and
admission/operation rules of healthcare sys-
tems, different patient related issues (e.g., de-
terioration during waiting), and even different
objective(s) or constraint(s). The performance
of our proposed algorithm should still be sat-
isfying.

4. ESB&B and Adaption to Inpatient

Bed Allocation

We first summarize the original ESB&B algo-
rithm proposed in Xu (2009) and Xu and Nel-
son (2013), and then a modest improvement for

the ESB&B algorithm is proposed. After that,

we introduce how to adapt the ESB&B algo-
rithm to the inpatient bed allocation problems

under CO configuration.

4.1 Original ESB&B Algorithm

The original ESB&B algorithm proposed in Xu
(2009) and Xu and Nelson (2013) aims to solve
the discrete simulation optimization problems
maxyex E[Y(x)], where X is the intersection of
the integer lattice Z? with a closed set in RY,
and |X| < oo, where | - | denotes the cardinality
of a set. Note that E[Y(x)] cannot be analyti-
cally calculated, and it can only be estimated
via i.i.d. observations of random variable Y(x)
via expensive stochastic simulation, which are
denoted as Y1(x), Ya(x), - - -. The detailed steps
of the original ESB&B algorithm are presented
in Algorithm 1.

Partition means diving a region into a
group of smaller non-empty subregions that
are mutually exclusive and collectively exhaus-
tive. In the original ESB&B algorithm, the di-
mension (or more precisely, coordinate axis)
with the maximal span is selected, and the re-
gion is divided into w (a predetermined value)
approximately even parts by cuts perpendic-
ular to that dimension, which is subject to
the rounding issue (see more details in on-
line Appendix A of Xu and Nelson (2013)).
We refer to such a partitioning strategy as the
maximal edge partitioning strategy. In iter-
ation k > 1, the number of solutions to be
sampled from each subregion that does not
belong to the record set, i.e., O(X’) for each
X" € P \{RF} is randomly determined based
on the previous information.
{6(XP) : XP e P \{RF}} is a random sam-

ple from a multinomial distribution with 3¢

In particular,
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Algorithm 1 Original ESB&B Algorithm
Step 0 Initialization.

Set iteration counter k = 0, initial partition
Py = {X}, and record set RV = X.

Step 1 Partitioning:
If the record set RK is not a singleton,
construct a partition of the record set,
P (R¥), and define the new full partition
by P/ = (Pk\{Rk}) Uey (R); otherwise, set
P7/(RF) = {RF} and P/ = .

Step 2 Bounding.
2.1. Solution sampling: For each subregion
xP e P (RK), randomly and uniformly sam-
ple SR solutions. If k > 0, for subregion
xP e Pk\{Rk} randomly and uniformly sam-
ple 6(X") solutions, where 6(X") depends on
the observations at solutions in Sk~1. Aggre-
gate all of the sampled solutions into a set, SX.
If k > 0, let Sk = k-1 U Sk; else let Gk = Sk,
2.2. Bound estimation: Simulate Ang ob-
servations from each solution in SK that
has not been encountered before and simu-
late Anp additional observations from each
solution that has been encountered before.
For subregion X' e P, set nf(xPy =
max,cxrnct Y(x), where Y(x) is the cumu-
lative sample mean of all observations at so-
lution x.

Step 3 Updating partition and record set.

Update  the Rk+1 =

record set

argmaxxr epr nf+(xP) and partition

Pr+1 =P Setk =k +1and go to Step 1.

trials and success probabilities p = {p(X?) :
XP € P \{RF}}, where 8¢ € Z* is predeter-
mined and p is calculated based on the obser-
vations at solutions in &*~1. The G* is a set of
all solutions that have been sampled through
iteration k. The intuition behind the calcu-

lation of p is to sample more solutions in a

subregion with better potential, which is im-
portant to the finite sample performance of
the algorithm. Also note that the choice of
p will not affect the convergence of the algo-
rithm as long as all elements of p are bounded
away from zero. Xu and Nelson (2013) con-
sider several strategies and find from numeri-
cal experiments that the probability-based allo-
cation using normal distribution performs bet-
ter. Here we summarize this strategy without
derivation details. For each X” € P, \{R¥}, let
n" = maxycxrnzia Y(x) be the optimal value
through iteration k, m = |X” N &*1| be the
total number of solutions in the subregion that
have been sampled and simulated through it-
eration k. The sample mean and sample vari-
ance of all solutions in the subregion are de-
noted as ¥ = m™ ¥ cxrnei1 Y(x) and S3 =
(m = 1)1 Y exrner1(Y(x) — Y)?, respectively.
Let 2 = 07! Tyexrnzn 200 (Yo(x) - Y(x))°
the pooled sample variance within the sub-
region, where v = ) cxrnei-1(n(x) — 1) and
n(x) denotes the total number of observa-
Also, define the effc-

tive degrees of freedom n* such that 1/n* =

tions obtained at x.

m=2Y exrnci-1 1/n(x). If m < |XP|, calculate

quantiles a1 and a; that solve

tl—al,m—l = tl—az,v
_ m-Y
SyxT+ (1/m) + (sp/\/ﬁ)

and let p(XP ) = a1 + ap; otherwise calculate

a(x) that solves

Fi-a(xn() o
1-a(x),n(x)-1 —

Sp/Nn*
and let p(XP) = maxyexrnert al(x).  Let

T = Xxrep,\(rr} Max {e,p(Xp)}, where € is

a predetermined constant that 0 < ¢ <« 1.
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For each X* € P\{RF}, calculate p(X") =
max {e, p(X")} /T.

The ESB&B algorithm summarized above
is globally convergent under mild condi-
tions. Specifically, assume |E[Y(x)]|] < oo
and Var(Y(x)) < oo for all x € X. Denote
X* = argmaxyex E[Y(x)]. Then with prob-
ability one, there exists an iteration number
ko such that for all k < kg, the record sets
R¥ produced by the ESB&B algorithm sum-
marized above are singletons and R < X*.
It is worth mentioning that the ESB&B algo-
rithm does not actually prune any subregion,
since there are no exact upper bound and lower
bound for each subregion but the estimated
ones. If one prunes some subregions based
on the estimated upper and lower bounds,
s/he will have some probability that mistak-
enly prunes the subregions containing X*, in
which case the asymptotic convergence will no
longer hold. Instead, the ESB&B algorithm in-
herits the spirit of B&B methods by dividing
the feasible region into smaller and smaller
subregions and allocating the sampling bud-
get according to the potential (i.e., estimated

bounds) of the subregions.

For subregions whose estimated bounds
show that they are inferior, although they are
not pruned directly, their probability of being
sampled in the future will be smaller than other
subregions. Note that the convergence analy-
sis holds for a variety of partitioning strategies
and solution sampling strategies. However,
it can be anticipated that the choice of parti-
tioning strategy and solution sampling strat-
egy will affect the finite sample performance
of the ESB&B algorithm. Xu and Nelson (2013)

consider the maximal edge partitioning strat-

egy for simplicity. However, such a strategy
is static and its performance may not be the
best. Intuitively, a partitioning strategy that
incorporates the previous sampling informa-
tion should be better than such a static strategy,
since it can locate the most promising subre-
gions more efficiently. Besides, Xu and Nelson
(2013) consider sampling 9 solutions for each
subregion of the partition of the record set and
sampling 9o solutions among all subregions
that do not belong to the record set according
to the multinomial distribution. For the sub-
regions of the partition of the record set, the
sampling budget is simply fixed, and it may be
improved by also considering the potential of

each subregion.

4.2 A Modest Improvement for ESB&B

As mentioned above, we consider improving
the finite sample performance of the original
ESB&B algorithm by adopting an adaptive par-
titioning strategy and a global solution sam-
pling strategy. We call the ESB&B algorithm
with such Adaptive partitioning strategy and
Global solution sampling strategy ESB&B-AG
algorithm. Since the new partitioning strat-
egy and solution sampling strategy are still in
the analysis framework of the asymptotic con-
vergence, the established global convergence
of the original ESB&B algorithm still holds for
the ESB&B-AG algorithm.

4.2.1 Adaptive partitioning strategy

In the original ESB&B algorithm, the maxi-
mal edge partitioning strategy is used to cut
the record set into w parts, which only con-
siders the geometric feature of the record set
and does not utilize the previous sampling in-

formation. Inspired by the work of Lu et al.



Li et al.: Simulation Optimization for Inpatient Bed Allocation with Sharing

67

(2021), we adopt the following adaptive parti-
tioning strategy. Consider a general record set

R that is represented as follows:

hi(x)<bj, j=1,---,q
Li<x;<u;, i=1,---,d

xirli/uiezr izl/"'/d

We consider all the possible partitions that
divide R into w = 2 parts using cuts perpen-
dicular to one coordinate axis). Specifically,
define set {ka,R;Uk} fork =1, ,uy — Ly,

w=1,---,d,such that R is represented as

hi(x) <bj, j=1,---,q
li<xi<u;, i=1,---,dandi#w
Li<xi<li+k-1, i=w
xi,li,uiez, i=1,---,d
and R’ is represented as
hi(x) <bj, j=1,---,q
i<xi<u;, i=1,---,dandi#w
Li+k<xi<u;, i=w
xi,li,u; €z, i=1,---,d

Define a set ‘8 which is a collection of all
the sets {Ru, R),} such that Ryx NS # 0
and R;U , NS # 0, where S denotes the set
of all sampled solutions right before the par-
tition. Note that 8 will be nonempty as long
as [R N &| > 2. Then, the adaptive partition-
ing strategy chooses the partition in ‘B that the
most similar solutions are likely to be grouped
together. Mathematically, the final chosen par-
tition is

argmin Z (Y(x) = Y)?
PR)ER xPepr(R) xeXPNG
which can be simply solved by enumeration,

since |P| is linear to the dimensionality d.

Compared with the static maximal edge par-
titioning strategy, such adaptive partitioning
strategy tends to construct subregions wherein
inferior solutions and superior solutions clus-
ter respectively, so that the subregion with a
cluster of inferior solutions can be less likely
sampled while the subregion with a cluster of
superior solutions can be more likely sampled

in the future.

4.2.2 Global solution sampling strategy

In the original ESB&B algorithm, 9r solu-
tions are sampled in each subregion X' €
P];’(Rk), and 9 solutions are sampled among
all subregions that do not belong to the record
set according to the multinomial distribution,
where the probability in each subregion is de-
termined by its potential estimated via obser-
vations in it. Intuitively speaking, for subre-
gion X" € P/(RF) it should be beneficial if the
sampling budget is also allocated based on its
potential instead of simply fixed. Recall the
strategy of constructing the multinomial sam-
pling distribution for subregions that do not
belong to the record set described in Section
4.1. Itis clear that same method can be applied
to X ¢ P];’(Rk) to calculate p(XP). So, it is
totally workable if one considers allocating the
@R + 90 solution sampling budget globally to
the entire subregions in #;. In particular, after
calculating p(X?) for each X" € P/, one now
needs to define T = ¥xrep max {e, p(xP)}
and calculate p(X”) = max {e, p(X")} /T for
each X' ¢ #;. Then, let {6(XP): XP e P/} be
arandom sample from a multinomial distribu-
tion with w9g + 9o trials and success proba-
bilities p = {p(X”) : X" € P/}, and randomly
and uniformly sample 0(X") solutions for sub-

region XP e P,;. Note that in iteration 0, since
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no solution has been sampled, one can simply
let p(X?) = 1/1#]. Using such a global so-
lution sampling strategy may help the ESB&B
algorithm to concentrate more on subregions
that have higher potential estimated from pre-
vious observations, which may increase the ef-
ficiency when searching for a better solution.
The detailed steps of the improved ESB&B
algorithm, i.e., ESB&B-AG algorithm, is pre-
sented in Algorithm 2.

4.3 Adaption to Inpatient Bed Allocation

As discussed in the introduction, the inpatient
bed allocation problems under CO configura-
tion are combinatorial optimization problems
where the objective function and (some) con-
straints need to be estimated via expensive and
noisy stochastic simulation. The dimension-
ality of the feasible solution varies when the
number of clusters varies. For the ESB&B al-
gorithm, although the theoretical analysis does
not restrict the form of the feasible region, the
original ESB&B in Xu (2009) and Xu and Nelson
(2013) is designed for the feasible region that
is the intersection of the integer lattice Z? with
a closed set in R?. Therefore, some adaption is
required in order to make the original ESB&B
algorithm or the improved ESB&B-AG algo-
rithm applicable to the inpatient bed allocation
problems under CO configuration. Moreover,
how to efficiently sample solutions uniformly
in the feasible region is also an issue to be ad-
dressed, since now the region is no longer sim-

ply a hypercube with linear constraints.

4.3.1 Two-layer branches
Note that the dimensionality of the feasible so-
lution will be fixed once the number of clusters

is fixed. So, a natural idea is to consider the

Algorithm 2 ESB&B-AG Algorithm
Step 0 Initialization.

Set iteration counter k = 0, initial partition
Py = {X}, and record set RV = X. Let 0 = 0.
Step 1 Partitioning:
If the record set R¥ is not a singleton:

(a) If|RKN&K| > 2, apply the adaptive par-
titioning strategy to constructa partition
of the record set, 7’,2’ (Rk );

(b) otherwise, apply the maximal edge par-
titioning strategy with w = 2 to con-
struct PIQ’ (RF).

And define the new full partition by
P = (Pk\{Rk}) UPIQ’(Rk). Otherwise, set
P(RF) = {RF} and P] = Py
Step 2 Bounding.
2.1. Solution sampling: For each subregion
xP e #,, randomly and uniformly sample
0(XP) solutions, where 6(XF) is determined
as described in Section 4.2.2. Aggregate all of
the sampled solutions into a set, Sk Ifk >0,
let &k = k=1 U SK; else let &F = sk,
2.2. Bound estimation: Simulate Ang ob-
servations from each solution in SK that
has not been encountered before and simu-
late Anp additional observations from each
solution that has been encountered before.
For subregion X' e Py, set I (xP) =
maX,cxrnak Y(x), where Y(x) is the cumu-

lative sample mean of all observations at so-

lution x.

Step 3 Updating partition and record set.
Update the record set RK*! =
argmaxypr epr nFHL(xP) and partition

Pr+1 =P} Setk =k +1and go to Step 1.
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two-layer branches as follows. For the inpa-
tient bed allocation problems under CO con-
figuration, denote its feasible region as X. Re-
call that the total number of departments is I.
Initially, the feasible region X is divided into
I — 1 parts, wherein the number of clusters |
is1,---,I -1, respectively. Note that there is
no need to explicitly consider the subregion
wherein the number of clusters is 0 or I, be-
cause such a case means the fully dedicated
configuration, which is contained in the subre-
gion wherein the number of clusters is 1 and
the number of shared beds for cluster 1is 0. All
the future partitions are within these I — 1 sub-
regions, which can ensure that the dimension-
ality in each subregion is consistent. It is like
that we predetermine the first-layer branches
(which are the branches directly from the root
node X, and only let the algorithm adaptively
determine the branches under this layer. In
practice, one only needs to let the partition of
the record set R = X, i.e.,, PJ/(R?), be exactly
the collection of the aforesaid I —1 parts in iter-
ation 0, and in the later iterations the partition

is normally conducted as described before.

4.3.2 Structure of solutions

When the number of clusters is fixed, the
solution can be explicitly written. For ex-
ample, suppose I = 3 and given that the
number of clusters is 2, then a feasible (only
in terms of the maximal number of inpa-
tient beds) solution can be written as x =
(x1, x2, X3, X4, X5, X6, X7, Xg) such that Z?:l X =
B, where x1, x2, x3 denote the number of ded-
icated inpatient beds for departments 1, 2 and
3 respectively, x4,x5 denote the number of
shared inpatient beds in clusters 1 and 2 re-

spectively, and xe, x7, xg denote how the 3 de-

partments are partitioned into 2 clusters. For
(x6, x7, xg) there are a variety of expression
forms. One simple way is to assign integers
to (xg, x7, xg) to indicate to which cluster a de-
partment belongs. For example, (x¢, X7, xg) =
(1,2,1) means departments 1 and 3 form one
cluster, and department 2 forms one cluster.
Note that when a cluster only contains one
department, the shared beds are actually also
dedicated to that department. Also note that
the above expression will produce duplicated
solutions. For example, (x¢, x7,x3) = (2,1,2)
also means the same partition of departments.
To reduce the feasible solution, such duplica-
tions should be eliminated using some rule.
A simple rule is to assign the cluster numbers
according to the ascending order of the mini-
mal department index in each cluster. Under
such rule, (xg, x7,x5) = (2,1,2) is not allowed
and (x¢, x7, xg) = (1,2, 1) is the unique expres-
sion when departments 1 and 3 form one clus-
ter and department 2 forms one cluster. Be-
sides, to make the expression of the feasible
region easier, other constraints in addition to
the number of inpatient beds are moved to the
objective function. For example, for problem
(1), the hard constraint (3) can be moved to
the objective function with an indicator func-
tion (which returns zero when the constraint is

satisfied and infinity otherwise).

4.3.3 Sampling of solutions

Based on the solution structure described in
Section 4.3.2, to randomly and uniformly sam-
ple a solution in a subregion that is contained
in one of the I — 1 parts defined in Section 4.3.1
involves two steps. The first step is to sam-
ple the bed allocation to each department and

each cluster, subject to the constraints on each
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number and the total number. The acceptance-
rejection technique is the most straightforward
choice for such a purpose. However, in this
case, the acceptance rate may be unaccept-
ably low. We adopt the Dirichlet-rescale (DRS)
algorithm proposed in Griffin et al. (2020),
which can randomly and uniformly generate
a d-dimensional vector u = (u1,--- ,uy) that
Z?zlui =Uand l; <u; <u;,i=1,---,d, for
given I;, u; and U with high efficiency. Round-
ing is required since the number of inpatient
beds is an integer. After rounding, the summa-
tion of the integers may be not equal to B. We
simply do the following. If the summation ex-
ceeds B, then randomly pick a positive element
and decrease it by one; repeat until the sum-
mation equals B. Otherwise, randomly pick
an element that could be positive or zero and
increase it by one; repeat until the summation
equals B. The second step is to sample the par-
tition of departments under a given number of
clusters, say I’ € {1,--- ,I — 1}. To ensure effi-
ciency, a random permutation of the depart-
ment indices 1,---,I is generated and then
I’ =1 cuts are randomly added to divide the
index sequence into I’ non-empty parts. After
that, the rule of assigning the cluster numbers
as described in Section 4.3.2 is applied to deter-
mine the values of the corresponding elements

in the solution.

5. Numerical Experiments

The purpose of this section is twofold. The
first purpose is to investigate the range of ap-
plications of the ESB&B and ESB&B-AG algo-
rithms compared with the SMA of Gong et al.
(2022). Recall that the SMA is highly cus-

tomized for the specific inpatient bed alloca-

tion problem (1), so it will be anticipated that
SMA is not suitable for other discrete simula-
tion optimization problems. This is to be ver-
ified via numerical experiments. On the other
hand, since the ESB&B and ESB&B-AG algo-
rithms are designed for general discrete sim-
ulation optimization problems, whether they
indeed perform fairly well for a variety of prob-
lems including inpatient bed allocation prob-
lems is also to be verified. The second purpose
is to compare the performance of the ESB&B-
AG algorithm with the original ESB&B algo-
rithm to show the practical value of the im-
provement proposed in this paper. Through-
out the numerical experiments, both ESB&B
and ESB&B-AG algorithms are implemented
in Python with w = 2, Ang = 10, Ana = 2,
9r = 10, 9o = 20, € = 0.1; the exactly same
implementation of SMA with the same param-
eters as in Gong et al. (2022) is used. Since
the SMA adopts a GA framework in its outer
layer, we also try the basic GA, where binary
encoding is employed with a population size
of 50, the crossover probability is 0.9, and the
mutation probability is 0.005 as suggested in
Schaffer et al. (1989), and for each solution in
the population 5 observations are simulated
Note that the ESB&B is

originally defined for a maximization problem

in each iteration.

while the SMA is for a minimization problem.
Also note that a maximization problem can be
easily transformed to a minimization problem
by adding a negative sign, and vice versa. So in
the following, we will implicitly do such trans-

formation without specific mention.
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Figure2 The Miller and Shaw Function in Two Dimensions

5.1 Results for Synthetic Problems

The first test problem is exactly from Xu (2009)
and Xu and Nelson (2013) that originally pro-
pose the ESB&B algorithm, which is a modifi-
cation of the multimodal function F, used in
Miller and Shaw (1996). Specifically, consider

_sin® (0.057x1)  sin® (0.057tx2)

min > =~ (6)
(x1,x2)eX  22((x1-10)/80) 22((x2-10)/80)
where X = Z2 N [0,100]?, and the objective

function is observed with normally distributed
noises with mean of 0 and a standard devia-
tion of 0.3. This problem has a global optima
(10, 10) with the objective value of —2. The re-
sponse surface is bumpy with 25 local optimal,
which is shown in Figure 2. It is a challeng-
ing test problem for simulation optimization
algorithms.

The second test problem is to minimize
the Griewank function, which is adapted from

Salemi et al. (2019). Specifically, consider

DX Z 4000 n cos ( ) @)

where X = Z% N [-50,50]", and the objective

rrrrr

function is observed with normally distributed
noises with a mean of 0 and a standard devia-
tion of 0.1. This problem has a global optima
(0,---,0) with the objective value of 0. It also
has multiple local optima and it is a commonly

used test problem for optimization algorithms.

Figures 3 and 4 show the performance of
GA, SMA, original ESB&B, and ESB&B-AG for
the Miller and Shaw problem and Griewank
problem with d = 3, respectively. Each curveis
the average of 50 repetitions of each algorithm,
and the horizontal axis is the sample size, i.e.,
the number of noisy observations of the ob-
jective function. Several conclusions can be
drawn from the results. First, both ESB&B and
ESB&B-AG algorithms perform fairly well in
two problems, while the performance of SMA
isless satisfying. For the Miller and Shaw prob-
lem, SMA quickly finds good solutions in the
early stage but does not improve too much af-
terward. For the Griewank problem, the per-
formance of SMA is worse and it behaves just
like the basic GA. It seems like some features in

SMA that are highly customized for problem
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(1) do not work for these general simulation
optimization problems. Second, the ESB&B-
AG evidently outperforms the original ESB&B

on the two problems.

It is desirable to establish the complexity
of the algorithm. For deterministic optimiza-
tion algorithms, it is sometimes possible to
derive the computation complexity. But for

simulation optimization algorithms, deriving

the computation complexity is both impossi-
ble (since the computation in the algorithm
is too complicated) and unnecessary (since
the most time-consuming part is running the
simulation model). So, a more reasonable
and practical metric is the sample complexity,
where one sample means running the simula-
tion model once to obtain one noisy observa-

tion. In particular, one can consider the sam-
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Table 1 Average Sample Size of Different Algorithms for the Griewank Problem

d =1, Ny =20000

d =2, Ny = 40000

d =3, N3 = 100000

exactopt. nearopt. exactopt. nearopt. exactopt. nearopt.

673 17500 12000 23145

GA 42 6211
(4 failed) (27 failed) (29 failed) (5 failed)
6388 -
SMA 571 1170 44460
(9 failed) (30 failed)
ESB&B 1666 933 23166 4749 53245 24799
ESB&B-AG 1358 798 15526 3931 29345 11801

ple size required by a simulation algorithm to
reach a certain level of solution accuracy; see
for example Zhang et al. (2023ab). We con-
duct some numerical experiments to compare
the sample size of different algorithms for the
Griewank problem with varying dimensions.
More specifically, ford = 1,2, 3, each algorithm
is run until reaching the exact optimum (which
means the found solution is the true global op-
tima) or near optimum (which means the true
function value of a found solution is smaller
than 0.1 while the true global optimum is 0).
The algorithm will also stop if the sample size
reaches the limit N;, which is denoted as a fail-

ure.

At each solution accuracy level, each al-
gorithm is repeatedly run 30 times, and the
results are reported in Table 1. The average
sample size is computed among the successful
replications. If the number of failures among
30 replications is larger than 0, it is also re-
When the

number of failures is 30, the average sample

ported (shown in parentheses).
size is not defined (denoted with — ). It can
be observed that when d = 1, the sample size
of SMA is the lowest at each solution accu-
racy level, which means its sample efficiency
is the highest without being trapped in the
local optimum. GA has the second highest

sample efficiency, however, it fails sometimes
to find the global optimum. However, as d
increases (which means the problem becomes
more difficult), the performance of SMA de-
teriorates largely. For d = 2, it has a large
probability of being trapped in the local opti-
mum; while for d = 3, it can not find the global
optimum among 30 replications, and its sam-
ple efficiency becomes the lowest for finding
the near optimum. GA also deteriorates sim-
ilarly. In contrast, both ESB&B and ESB&B-
AG perform robustly in all cases. They can al-
ways find the global optimum, and the sample
size becomes more competitive at each solu-
tion accuracy level when the problem becomes
more difficult. Moreover, ESB&B-AG consis-
tently outperforms ESB&B in terms of sample

size.

All the above numerical results show that
SMA is not suitable for general simulation op-
timization problems, since it is highly cus-
tomized for a specific inpatient bed allocation
problem. It may find some good solution
quickly at early stage, but may get trapped in
some local optimum, since there is no theoreti-
cal guarantee of global convergence for it. The
plain GA performs worse than SMA without
particular parameter tuning. Both ESB&B and

ESB&B-AG perform fairly well without par-
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Table 2 Department-Related Parameters

Department i A Wi CIR C]W &i D;
Cardiac surgery 1 328 21.79 4350.58 579.80 1965 10
Minimally invasive surgery 2  3.53 2.54 503.45 28990 1924 6
Gastrointestinal surgery 3 785 12,67 255733 43485 2001 10
Ophthalmology 4 698 436 869.47 289.90 167.6
Burns surgery 5 207 1556 3095.00 579.80 193.3

ticular parameter tuning, since they are not
highly customized algorithms and have the-

oretical convergence property.

5.2 Results for Inpatient Bed Allocation

Problem

We now investigate the practical performance
of the ESB&B-AG algorithm on inpatient bed
allocation problems under CO configuration.
The problem (1) of Gong et al. (2022) is used as
an illustrative example. Specifically, the prob-
lem instance is exactly from Gong et al. (2022),
which is based on real data collected from a
public hospital in Shanghai, China. In this
problem instance, the time unit is day, there
are | = 5 departments with B = 240 beds to
allocate, and the related parameters are pre-
sented in Table 2. Each &; is the sum of the
average daily wage of nurses in Shanghai &"
(146.2 RMB) and the training cost amortized
into one day, which is denoted as EiT- For the
5 departments, & IT equals 50.3, 46.2, 53.9, 21.4,
and 47.1 RMB, respectively. Then the &r; is
setas &r, = (1+0.1x (|| = 1) + Sier, &r.
For fiand g;, i =1,---,5, empirical distribu-
tions that are constructed from real data are
used. Moreover, ¢ = 0.25, and 6 = 0.1. The
exact same implementation of the simulation
model for this problem instance as in Gong
et al. (2022) is used. When estimating the ob-

jective function in (1) and the constraint (3),

we call the output after running the simula-
tion model for 10* days (which balances the
simulation cost and the simulation fidelity) as
one noisy observation (i.e., one sample). And
we will replicate the simulation run indepen-
dently to obtain independent noisy observa-
tions and then the sample average will be cal-

culated for estimation.

Since we have shown that the ESB&B-AG
algorithm outperforms the original ESB&B al-
gorithm, here we only investigate the perfor-
mance of the ESB&B-AG algorithm for the in-
patient bed allocation problem and compare
it with the SMA that is highly customized for
this problem. Since the basic GA is also a gen-
eral optimization algorithm, we also try it in
this case. Note that one important feature of
SMA is that it can find good initial solutions
by utilizing detailed information of the spe-
cific inpatient bed allocation problem. How-
ever, the ESB&B-AG algorithm simply starts
from randomly generated solutions. As a rem-
edy, we let the ESB&B-AG algorithm first solve
the problem within a smaller feasible region
(under WF configuration instead of CO config-
uration). Then after 4 X 10* samples are used,
switch to the original problem (i.e., under CO
configuration) with the so far found solution as
an initial solution. For SMA, SA, and ESB&B-
AG, we run the algorithm until 10° samples

are exhausted and output the final found solu-
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Table 3 Achieved Total Costs when 10° Samples Are Exhausted Using SMA, GA and ESB&B-AG

Algorithm Mean Standard deviation = Gap of mean with SMA
SMA 2.95x10% 1.7x102 -
GA 3.28x10% 3.0x10° 11.36%
ESB&B-AG  2.99x10* 1.4x102 1.54%

tion. To evaluate the solution quality, run the
high-fidelity simulation model with 10° days
(which is time-consuming and not affordable
during the optimization) at this solution and
record the simulated objective function value
(i.e., the achieved total cost). Each algorithm
is repeated 30 times and the mean and stan-
dard deviation of the achieved total costs are
reported in Table 3. It can be seen that the per-
formance of ESB&B-AG is close to SMA. Given
that ESB&B-AG is a general optimization al-
gorithm while SMA is highly customized, the
performance of ESB&B-AG is fairly good. Note
that also as a general optimization algorithm,
GA has amuch larger gap with SMA compared
to ESB&B-AG. Recall that ESB&B-AG also has
stable and satisfying performance on the syn-
thetic problems, there is reason to believe that
ESB&B-AG will also perform well on other in-
patient bed allocation problems (e.g., when the
objective, constraints, and/or operation rules
of the healthcare system are different to those

in problem (1)).

6. Conclusions

In this paper, we propose to use the improved
ESB&B algorithm (i.e., ESB&B-AG algorithm)
to solve the inpatient bed allocation problems
under CO configuration where the objective
function and (some) constraints need to be esti-
mated via expensive and noisy stochastic simu-

lation. Compared to the SMA which is a highly

customized heuristic algorithm for one spe-
cific inpatient bed allocation problem, the orig-
inal ESB&B algorithm and the ESB&B-AG al-
gorithm are theoretically convergent and suit-
able for relatively general problems, and the
performance of the ESB&B-AG algorithm on
the inpatient bed allocation problem for which
SMA is customized is close to SMA. It pro-
vides practitioners with a good choice when
solving a real inpatient bed allocation problem
that is not identical to the one for which SMA
is customized. A possible direction to extend
this paper is to improve or modify the original
ESB&B algorithm more substantially for better
solving combinatorial simulation optimization
problems. For example, pruning the inferior
branches is a core idea for classical B&B frame-
work, but how to inherit it in ESB&B while
still guarantee the global convergence is still

an open question.
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