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ABSTRACT
Stochastic kriging is a popular metamodeling technique to approximate computationally expensive simu-
lation models. However, it typically treats the simulation model as a black box in practice and often fails to
capture the highly nonlinear response surfaces that arise from queueing simulations. We propose a simple,
effective approach to improve the performance of stochastic kriging by incorporating stylized queueing
models that contain useful information about the shape of the response surface. We provide several sta-
tistical tools to measure the usefulness of the incorporated stylized models. We show that even a relatively
crude stylized model can substantially improve the prediction accuracy of stochastic kriging.

1. Introduction

Queueing models are widely used to facilitate decision making
in a great variety of areas, including manufacturing, logistics,
supply chain management, telecommunication, health care,
finance, etc. However, they generally do not admit analytical
expressions, except for those that are highly stylized such as
Erlang’s loss systems and Jackson networks (Asmussen, 2008).
Instead, simulation is extensively adopted to analyze and pre-
dict the behavior of complex queueing models that arise from
large-scale stochastic systems in real-world applications. The
popularity of queueing simulation stems from its modeling
flexibility, allowing the users to incorporate arbitrarily fine
details of the system into the model and estimate virtually any
performancemeasure of interest. Nevertheless, typical queueing
simulations are computationally expensive to execute, espe-
cially if the performance measures of interest are steady-state
quantities or if the systems are heavily utilized (Whitt, 1989;
Asmussen, 1992). This computational inefficiency severely
restricts the usefulness of queueing simulation in settings such
as real-time decision making and system optimization.

In order to alleviate this inadequacy, metamodeling has been
actively developed in the simulation community; see Barton
(1998) for a review. A metamodel, or a model of the simulation
model, aims to characterize the performance measure of the
simulation model, i.e., response surface, as a function of the
design variables. It is often built via proper interpolation of
the simulation outputs at a small number of carefully chosen
design points. A metamodel runs much faster than the original
simulation model in general, and it yields deterministic outputs
rather than stochastic ones. Hence, it can be used in lieu of the
true response surface to efficiently search for the optimal values
of the design variables, even in real time.

Kriging-type metamodels have recently become popular in
the simulation literature, thanks to their tractability, ease of use,
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and ability to provide a good global fit over the value range of
the design variables and to capture moderate heteroskedasticity
of the response surfaces. Kriging originated in geostatistics
(Matheron, 1963) and was later successfully adopted in the
Design and Analysis of Computer Experiments (DACE) com-
munity to fit deterministic simulation models (Sacks et al.,
1989); see Kleijnen (2009) for a review. In this article, we focus
on stochastic kriging, which was proposed by Ankenman et al.
(2010) to account for the intrinsic uncertainty in stochastic
simulation that results from the random simulation noise. This
metamodel has been used successfully for uncertainty quantifi-
cation in stochastic simulation (Xie et al., 2014) and simulation
optimization (Scott et al., 2011; Sun et al., 2014).

Simulation metamodels, including stochastic kriging, treat
the simulation model being approximated as a black box in
general, discarding its internal details and structural properties
of the response surface. This issue may become severe when the
response surface is highly nonlinear or even exhibits “explod-
ing” behavior, which is often the case for queueing simulation
if the simulated queue is near saturation with a high utilization.
Our solution to this issue takes advantage of stylized queueing
models that are highly analytically tractable, due to their greatly
simplifying assumptions. Albeit not good at quantitative pre-
diction, stylized models can capture the essential dynamics of
the queueing system, facilitating the development of manage-
rial insights. For example, they may help users to identify the
bottleneck of a queueing network and its saturationmechanism.

The central idea of this paper is to use the stylized queueing
model to capture the highly nonlinear trend of the response
surface, use regression that is linear in the unknown coefficients
to adjust both the scaling factor of the stylized queueing model
and themean level of the “detrended” surface, and use the spatial
correlation inherent in stochastic kriging to correct the remain-
ing bias. Notice that stylized queueing models generally have
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analytical solutions or simple numerical solutions for the perfor-
mance measure of interest, so their computational complexity
is negligible relative to the simulation model. By incorporating
stylized queueing models, we effectively extract the valuable
structural information about the response surface from them
and transform the queueing simulation model from a black box
to a gray box.Wewill demonstrate that the gray-box perspective
greatly enhances the performance of stochastic kriging in the
context of queueing simulation, and significantly accelerates
the process of solving the associated simulation optimization
problems. Other contributions of this article include developing
several statistical tools to measure usefulness and effectiveness
of a stylized queueing model in the proposed metamodel.

Incorporating context-specific information to improve the
prediction accuracy of metamodels for queueing simulation is
not a new topic; see Cheng and Kleijnen (1999) and Yang et al.
(2007). Specifically, they assume that the “trend” of the response
surface consists of two factors, one of which accounts for the
exploding behavior of saturated queues. However, this factor
requires that the users exactly know the saturation point where
the explosion occurs, which is not necessarily the case for com-
plex queueing networks, and can be prohibitively difficult if
the design variable of interest is multidimensional. Moreover,
their metamodels are based on low-order polynomial regres-
sions, which tend to provide a good fit only locally, rather than
the kind of robust global fit forwhich the stochastic kriging aims.
In the same vein, Lin et al. (2016) recently proposed to leverage
an analytical model to enhance kernel regression, another pop-
ularmetamodeling technique. In their work, the simulation out-
puts are adjusted by the outputs of the analytical model before
being used in kernel regression. The net effect is that the pre-
dicted responses at locations that are distant from (resp., close
to) the design points are basically determined by the analyti-
cal (resp., simulation) model. By contrast, the use of analytical
models in this article is to detrend the response surface so that
the residuals can be better fitted by a stationary random field. A
notable result of our different treatment is that both the analyt-
ical and simulation models have a nonnegligible impact in the
prediction of the responses at all locations.

There are other ways to enhance stochastic kriging, for exam-
ple, by incorporating auxiliary information. One approach is
to leverage the gradient information of the response surface,
provided that it can be easily acquired along with the observa-
tions of the surface itself; see Morris et al. (1993) and Mitchell
et al. (1994) in the DACE setting, and Chen et al. (2013) and
Qu and Fu (2014) in the stochastic simulation setting. Another
main approach is to assume that a coarser, but faster, simulation
model of the same system is available in addition to the original
expensive simulation model, and then leverage the simulation
outputs from both models and the correlations between them
to refine the prediction; see Kennedy and O’Hagan (2000) and
Forrester et al. (2007). However, both of the approaches above
adopt a black-box perspective and generally do not take into
account the structural information that is necessary to represent
the highly heteroskedastic response surfaces of queueing simu-
lations.Moreover, our approach is orthogonal to theirs in a sense
and can be used in combination with them to achieve further
enhancement.

Our approach to enhancing stochastic kriging can be viewed
as a means for improving the trend modeling. Other aspects
that one can investigate to improve the prediction accuracy
of stochastic kriging include experiment design (e.g., design
point placement and simulation budget allocation) and choice
of the covariance function. Design of computer experiments is
an research area of great importance in its own right and we
refer to Santner et al. (2003, §5 and §6) for a general exposition
on the subject. In particular, the experiment design proposed by
Ankenman et al. (2010), which assumes a constant trend term in
stochastic kriging and attempts tominimize the integratedmean
squared error of prediction over the entire design space, can be
potentially extended to our setting without significant difficulty.

The choice of the covariance function, on the other hand,
can be viewed formally as a model selection problem, and thus
statistical tools such as information criteria or cross validation
can be readily applied; see Rasmussen and Williams (2006, §5).
One can also choose the covariance function based on domain
knowledge such as the smoothness of the response surface,
since the level of differentiability is uniquely determined by
that of the covariance function; see Xie et al. (2010). We remark
that the three aspects: trend modeling, experiment design,
and choice of covariance function, are essentially orthogonal
but equally important for enhancing stochastic kriging. The
approach followed by this article represents a simple way to
improve trend modeling, and any improvement made to the
other two aspects can and should be incorporated in practice to
further boost the prediction accuracy of stochastic kriging.

The remainder of this article is organized as follows. In
Section 2 we build the framework for stylized-model enhanced
stochastic kriging. In Section 3 we present several statistical
measures for evaluating stylized queueing models. In Section 4
we demonstrate, through an illustrative example, the benefits
of stylized models and validity of measures. We also compare
our stylized-model-enhanced stochastic kriging with another
approach that enhances stochastic kriging by leveraging gra-
dient information. In Section 5 we propose a few simple
approaches for constructing stylized models for a general class
of queueing networks. We study two real-world applications in
Section 6 and conclude in Section 7. TheAppendix collects some
of the technique results.

2. The framework

In this section, we give an overview of the stochastic kriging
metamodel proposed inAnkenman et al. (2010), discuss its defi-
ciency in practice, and introduce our approach for incorporating
stylized queueing models in stochastic kriging.

2.1. Stochastic kriging

Metamodeling is concerned with fitting an unknown determin-
istic response surface Y(x), where x = (x1, . . . , xd )ᵀ denotes
the design variables of the simulation model. For example, x
may represent the number of servers and their service capac-
ities, while Y(x) the steady-state mean waiting time of the
system. The kriging method expresses Y(x) as
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Y(x) := f (x)ᵀβββ +M(x), (1)

where f (x) is a vector of known functions of x, βββ is a vector of
unknown parameters of compatible dimension, andM is a real-
ization of amean zero random field, which is randomly sampled
from a space of functions mapping Rd �→ R. A typical example
of f (x) is basis functions, such as polynomials. The metamodel
(1) is called “universal kriging”; in particular, if the “trend”
f (x)ᵀβββ ≡ β0 is a constant, it is called “ordinary kriging.” In the
context of stochastic simulation, Y(x) is observed with random
noise. Therefore, the stochastic krigingmetamodel assumes that
the simulation output on the jth replication at design point x is

Yj(x) = f (x)ᵀβββ +M(x)+ ε j(x), (2)

where ε1(x), ε2(x), . . . are the simulation errors. Suppose that
the simulation model is executed at design points xi with ni
simulation replications, i = 1, . . . , k. Define

Ȳ (xi) := 1
ni

ni∑
j=1

Yj(xi) and ε̄(xi) := 1
ni

ni∑
j=1
ε j(xi).

Then, the metamodel (2) can be rewritten as

Ȳ = Fβββ +M + ε̄εε,
where Ȳ := (Ȳ (x1), . . . , Ȳ (xk))ᵀ, ε̄εε := (ε̄(x1), . . . , ε̄(xk))ᵀ,
F := ( f (x1), . . . , f (xk))ᵀ, and M := (M(x1), . . . ,M(xk))ᵀ.
Furthermore, let ��� be the k× k covariance matrix of
M, i.e., ���i j = Cov[M(xi),M(x j)] for i, j = 1, . . .
, k. Let γγγ (x0) be the k× 1 vector (Cov[M(x0),
M(x1)], . . . ,Cov[M(x0),M(xk)])ᵀ. Let ��� = Cov[ε̄εε, ε̄εε] be
the k× k covariance matrix of ε̄εε, i.e., ���i j = Cov[ε̄(xi), ε̄(x j)]
for i, j = 1, . . . , k. The following assumption is usually imposed
for stochastic kriging.

Assumption 1. The random field M is a second-order sta-
tionary Gaussian process with mean 0. More specifically,
E[M(x)] ≡ 0 and Cov[M(x),M(x′)] = τ 2R(x− x′;θθθ ),
where τ 2 is the variance of M(x) for all x and R is the
correlation function that depends only on x− x′ and some
unknown parameters θθθ . Moreover, R satisfies R(0;θθθ ) = 1 and
R(x− x′;θθθ )→ 0 as ‖x− x′‖ → ∞. The simulation errors
ε1(x), ε2(x), . . . are independent and identically distributed
with normal distributionN (0, σ 2(x)), and independent ofM.

Remark 1. In all the numerical examples of this article, we
assume a Gaussian correlation function of the form R(x−
x′;θθθ ) = exp(−∑d

i=1 θi|xi − x′i|2) with θi > 0 for i = 1, . . . , d;
see Stein (1999, §2.7) for more types of correlation functions.

We are interested in predicting the responseY(x0) at an arbi-
trary point x0. It can be shown with a similar derivation in Stein
(1999, §1.2) that under Assumption 1, the best unbiased predic-
tor that minimizes theMean Squared Error (MSE) of prediction
is

Ŷ(x0) = f (x0)ᵀβββ + γγγ (x0)ᵀ(��� +���)−1(Ȳ − Fβββ),

and the optimal MSE is

MSE∗(x0) = τ 2 − γγγ (x0)ᵀ (��� +���)−1 γγγ (x0), (3)

provided that βββ ,���, γγγ (x0), and��� are known.

2.2. Stylized-model enhanced stochastic kriging for
queueing simulation

Despite its general form, in applications f (x) is mostly taken
as a constant, i.e., f (x)ᵀβββ ≡ β0. For instance, such a specifica-
tion is recommended in Ankenman et al. (2010); see also Sacks
et al. (1989) and Kennedy and O’Hagan (2001). A main reason,
in addition to the obvious simplicity, is that f (x)ᵀβββ represents
the user’s knowledge about the shape of the response surface.
For complex simulation models, it is often difficult to acquire
such meaningful information in advance. To avoid introducing
spurious constituent functions to the metamodel, it is gener-
ally preferable to take a black-box viewpoint and use a constant
trend, unless there is actual prior information that suggests oth-
erwise. Following the naming convention in the kriging litera-
ture, we call stochastic kriging with a constant trend Ordinary
Stochastic Kriging (OSK).

However, the response surfaces in the queueing simulation
setting are highly nonlinear and highly heteroskedastic in gen-
eral, and often exhibit exploding behavior as the utilization of
the queue increases. Given the high computational cost, both the
number of design points at which the simulation model is exe-
cuted and the number of simulation replications are commonly
limited. In this case, the simulation outputs are insufficient to
reveal the true shape of the surface, leading to inaccurate predic-
tions. To illustrate, consider the steady-state expected number
of customers (including the one in service) Y(x) of an M/M/1
queue with utilization x ∈ (0, 1). It is well known that Y(x) =
x/(1− x), and clearly the surface explodes as x approaches one.
In order to highlight the deficiency of using a constant trend, we
assume that the simulation is “noiseless” and Y(x) can be com-
puted without error for any arbitrary x. OSK is then reduced
to traditional ordinary kriging in this case. We compute Y(x)
at five design points x = 0.1, 0.3, 0.5, 0.7, 0.9 and take a Gaus-
sian correlation function of the form R(x; θ ) = e−θx2 for the
ordinary kriging metamodel. Figure 1 shows that the predicted
surface of ordinary kriging is reasonably good for most of the
value range of x. However, it fails to capture the unbounded-
ness of Y(x) when the queue is saturated, which is of greater
interest for decision makers. (Notice that the predicted surface
for x ∈ [0.9, 1) appears to be stabilized whereas the true surface
begins to explode.)

Figure . Ordinary kriging for anM/M/1 queue.
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In addition to failing to capture the non-constant trend,
OSK tends to overestimate the marginal variance of the con-
stituent Gaussian process in order to compensate the possi-
bly large variation in the response surface, which should have
been characterized by the trend term. The incorrect estima-
tion of the model variability may become a significant issue in
both statistical inference and in simulation optimization algo-
rithms, which often use the variance information to determine
the exploitation-exploration trade-off (Sun et al., 2014). If the
trend can be reasonably captured, the detrended surface would
have substantially less variation, and thus is more suitable to be
modeled as a second-order stationaryGaussian process. See also
Section 3.2 for more discussion on the issue.

To alleviate the inadequacy in OSK, we incorporate “infor-
mative” functions into f (x). We argue that basis functions such
as polynomials, splines, radial basis function, etc. are not par-
ticularly suitable for the queueing simulation setting, because
they lack domain knowledge of the problem context and do
not capture the exploding behavior. Also, it can be very difficult
to specify proper basis functions when the design variable x is
multidimensional. In addition, as the number of basis functions
increases, the users need to address the issue of overfitting and
the numerical challenge in the parameter estimation caused by
high-dimensional numerical optimization problems.

Instead, we take advantage of stylized queueing models that
can represent the essential structure of the complex queueing
network being simulated, and meanwhile admit analytical solu-
tions or simple numerical solutions that can be used as infor-
mative functions in the metamodel. Indeed, we shall discuss
in Section 5 and demonstrate in Section 6.1 and Section 6.2
that these stylized queueing models can be easily constructed
for a large class of queueing networks. For the time being, sup-
pose that we have built a proper stylized queueing model with
response q(x). Then, the metamodel we propose for queue-
ing simulation has the same form as Equation (2) with f (x) =
(1, q(x))ᵀ and βββ = (β0, β1)ᵀ. It is straightforward to extend
the formulation to the case of multiple stylized queueing mod-
els, but we focus on the simple case. We call this metamodel
Stylized-model Enhanced Stochastic Kriging (SESK). Clearly, the
purpose of q(x) is to capture the trend of the true response sur-
face, whereas the coefficients β1 and β0 are used to represent the
scaling factor of q(x) and the mean level of the detrended sur-
face via linear regression, respectively.

2.3. Maximum likelihood estimation

To apply SESK in practice, the parametersβββ, τ 2,θθθ , and��� need to
be estimated. In this section, we extend themaximum likelihood
estimation approach developed in Ankenman et al. (2010) for
OSK.

First,��� represents the intrinsic uncertainty of the simulation,
and its estimation can be separated from the other parameters.
Due to the heteroskedasticity in queueing simulation, it is dif-
ficult to construct a parametric model for ���. Instead, we esti-
mate ��� by the sample variances of the simulation outputs, i.e.,
�̂�� = diag(σ̂ 2(x1)/n1, . . . , σ̂ 2(xk)/nk), where:

σ̂ 2(xi) = 1
ni − 1

ni∑
j=1
(Yj(xi)− Ȳ (xi))2. (4)

Theorem 1 of Ankenman et al. (2010) shows that using this esti-
mator of��� does not introduce prediction bias.

Clearly, the simulation outputs Ȳ are multivariate normal
under Assumption 1. Hence, assuming ��� is known, the log-
likelihood function of (βββ, τ 2, θθθ ) is


(βββ, τ 2, θθθ ) = −k
2
ln(2π)− 1

2
ln

∣∣���(τ 2, θθθ )+���∣∣
− 1

2
(Ȳ − Fβββ)ᵀ

[
���(τ 2, θθθ )+���]−1

(Ȳ − Fβββ), (5)

where | · | denotes the determinant of amatrix andwewrite��� =
���(τ 2, θθθ ) to stress the dependence on the parameters.

The first-order conditions for maximizing 
(βββ, τ 2, θθθ ) can be
easily obtained by applying standard results for matrix calculus
and we omit the details; see Stein (1999, §6.4) for discussion on
related numerical methods.

In summary, a stochastic kriging metamodel is constructed
as follows:

(i) Estimate ��� as �̂�� = diag(σ̂ 2(x1)/n1, . . . , σ̂ 2(xk)/nk),
where σ̂ 2(xi) is given by Equation (4).

(ii) Using �̂�� instead of���, maximize 
(βββ, τ 2, θθθ ) in Equation
(5) to obtain the estimates (β̂ββ, τ̂ 2, θ̂θθ ). Set �̂�� := ���(̂τ 2, θ̂θθ ),
and γ̂γγ (x0) := γγγ (̂τ 2, θ̂θθ ).

(iii) Predict Y(x0) via the plug-in predictor,̂̂Y (x0) = f (x0)ᵀβ̂ββ + γ̂γγ (x0)ᵀ(�̂�� + �̂��)−1(Ȳ − Fβ̂ββ),

with MSE estimator

M̂SE(x0) = τ̂ 2 − γ̂γγ (x0)ᵀ(�̂�� + �̂��)−1γ̂γγ (x0)
+ δδδᵀ[Fᵀ(�̂�� + �̂��)−1F]−1δδδ,

where δδδ = f (x0)− Fᵀ(�̂�� + �̂��)−1γ̂γγ (x0); see Stein
(1999, §1.5) for a similar derivation.

3. Measures for the stylizedmodel

Obviously, multiple stylized queueing models can be con-
structed for SESK for a given queueing simulation experiment.
Two natural but important questions then arise. (i) How do
we test whether a stylized model indeed provides useful infor-
mation on the response surface? (ii) How do we select a styl-
ized model from a set of candidate models? The two questions
are about the usefulness and effectiveness of a stylized model,
respectively. Since the true surface is unknown, these questions
cannot be addressed by comparing it with the predicted surface,
but rather based on the statistical evidence provided by the sim-
ulation outputs at the design points. In this section, we devise
a hypothesis test to address the usefulness and propose a new
statistic to measure the effectiveness.

3.1. Z-test for usefulness

We propose the following hypothesis test for usefulness of a
given stylized model q(x) in SESK:

� null hypothesis H0: β1 = 0;
� alternative hypothesis H1: β1 
= 0.
IfH0 is rejected, then q(x) is useful for capturing the trend of

the response surface.
Throughout this section, we assume that ��� is given. For

notational simplicity, let ψψψ := (τ 2, θθθᵀ)ᵀ and ��� = ���(ψψψ)
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:= ���(τ 2, θθθ )+���. Let m be the size of ψψψ , i.e., ψψψ =
(ψ1, . . . , ψm)

ᵀ. Moreover, we use βββ0 and ψψψ0 to denote the
(unknown) true value of βββ and ψψψ , respectively; let β̂ββ and ψ̂ψψ
denote their respectiveMaximumLikelihood Estimators (MLE)
given���.

In order to construct a test statistic, we need to derive the
large-sample asymptotic distribution of the MLE β̂1. There are
two large-sample asymptotic regimes for MLEs in spatial statis-
tics, i.e., increasing-domain regime and fixed-domain regime
(Zhang and Zimmerman, 2005). The former assumes that the
minimum distance between the design points is bounded away
from zero and the sampling domain is unbounded. By contrast,
the latter assumes that the design points are taken more and
more densely from a fixed and bounded domain. We adopt the
increasing-domain regime (Assumption 2), because the MLEs
in the fixed-domain regime may be inconsistent, even for some
widely used correlation functions (Zhang, 2004). We impose in
Assumption 3 certain regularity conditions on��� and F in order
to obtain the consistency and asymptotic normality of the MLE
(β̂ββ, ψ̂ψψ) in the increasing-domain regime. Both Assumptions 2
and 3 are standard (Mardia and Marshall, 1984) and we briefly
discuss their applicability in Remarks 2 and 3, respectively.

Assumption 2. The design points {x1, . . . , xk} form a regu-
lar lattice and there exists a constant c > 0 such that ‖xr −
xs‖ ≥ c for all r, s = 1, . . . , k, as k→∞. For h ∈ Z

d , letting
σh := Cov[M(x+ h),M(x)] is absolutely summable over Zd ,
i.e.,

∑
h∈Zd |σh| <∞. Moreover, both σh,i and σh,i j are abso-

lutely summable over Zd for all i, j = 1, . . . ,m, where σh,i =
∂σh/∂ψi, and σh,i j = ∂2σh/∂ψi∂ψ j.

Remark 2. It can be easily verified that the power expo-
nential correlation function of the form R(x− x′;θθθ ) =
exp(−∑d

i=1 θi|xi − x′i|α ) for α ∈ (0, 2] satisfies the absolute
summability conditions in Assumption 2.

Assumption 3. Suppose the following regularity conditions on
��� and F :

(i) ��� is positive definite and twice differentiablewith respect
toψψψ forψψψ ∈ ��� , where��� is a compact set containing the
true valueψψψ0 as an interior point;

(ii) F has full rank and (FᵀF )−1 converges to a zero matrix
as k→∞;

(iii) for all i, j = 1, . . . ,m, ti j/(tiit j j)1/2 converges
as k→∞ to a finite limit ai j, where ti j :=
tr(���−1(∂���/∂ψi)���

−1(∂���/∂ψ j)), and A :=
(ai j)i, j=1,...,m is a nonsingular matrix;

(iv) k(Fᵀ���(ψψψ)−1F )−1 converges to a finite limit uniformly
forψψψ ∈ ��� as k→∞.

Remark 3. Condition (i) of Assumption 3 is satisfied for many
popular correlation functions including the power exponential
correlation function. Notice that F = (1, q) ∈ R

k×2, where 1 ∈
R

k is the column vector of ones and q = (q(x1), . . . , q(xk))ᵀ.
Hence, the first part of condition (ii) is trivially satisfied if the
stylized model q(x) is not a constant. The second part of condi-
tion (ii) holds if the smallest eigenvalue of FᵀF tends to infinity
as k→∞. Simple linear algebra reveals that this is equivalent
to ‖q‖2 + k−√

(‖q‖2 − k)2 + 4qᵀ1→∞ as k→∞. Condi-
tions (iii) and (iv) ensure that the Fisher information matrix of
the MLE is well behaved in the limit.

Now we derive some large-sample asymptotic prop-
erties of the MLEs. Define for any ψψψ ∈ ��� , V (k)(ψψψ) :=
k(Fᵀ���(ψψψ)−1F )−1 and V (ψψψ) := limk→∞V (k)(ψψψ). Notice
thatV (k)(ψψψ) ∈ R

2×2 for any k, andV (ψψψ) ∈ R
2×2. What’s more,

V (ψψψ) is positive definite and continuous in ψψψ ∈ ��� , because
the convergence of V (k)(ψψψ) is uniform for ψψψ ∈ ��� . The main
result of the asymptotic distribution of the MLE β̂ββ is stated in
the following Theorem 1.

Theorem 1. Let B ∈ R
n×2 be a matrix of rank n (n ≤ 2). Then,

under Assumptions 1 to 3:
√
k[BV (k)(ψ̂ψψ)Bᵀ]−

1
2 (Bβ̂ββ − Bβββ0)

d−→ N (0, I), (6)

as k→∞, where [BV (k)(ψ̂ψψ)Bᵀ]
1
2 denotes the square root of

BV (k)(ψ̂ψψ)Bᵀ, 0 is the n× 1 zero vector, I is the n× n identity
matrix, and d−→means “converges in distribution.”

The proof of Theorem 1 is based on the following Lemma 1,
which is a direct application of the Theorems 1 to 3 in Mardia
and Marshall (1984).

Lemma 1. Under Assumptions 1 to 3:

ψ̂ψψ
p−→ ψψψ0 and

√
k(β̂ββ − βββ0)

d−→ N (0,V (ψψψ0)), (7)

as k→∞, where
p−→means “converges in probability.”

Proof of Theorem 1. We first prove that as k→∞:

V (k)(ψ̂ψψ)
p−→ V (ψψψ0). (8)

This is equivalent to showing that for any ε, δ > 0, there exist
M <∞ for which

Pr(|V (k)
i j (ψ̂ψψ)−Vi j(ψψψ

0)| ≥ ε) < δ, k > M, i, j = 1, 2.
(9)

From the first part of Equation (7) of Lemma 1, ψ̂ψψ
p−→ ψψψ0 as

k→∞. Since V (ψψψ) is continuous in ψψψ ∈ ��� , the continuous
mapping theorem (Billingsley, 1999, §1.2) indicates that condi-
tionally on ψ̂ψψ ∈ ��� , V (ψ̂ψψ)

p−→ V (ψψψ0) as k→∞. Hence, there
existsM1 <∞ for which

Pr
(
|Vi j(ψ̂ψψ)−Vi j(ψψψ

0)| ≥ ε

2

∣∣∣ ψ̂ψψ ∈ ���)
<
δ

2
, k > M1, i, j = 1, 2.

(10)
Since V (k)(ψψψ)→ V (ψψψ) uniformly for ψψψ ∈ ��� , there exists
M2 <∞ for which∣∣V (k)

i j (ψψψ)−Vi j(ψψψ)
∣∣ < ε

2
, k > M2, ψψψ ∈ ���, i, j = 1, 2.

(11)
Since ψ̂ψψ

p−→ ψψψ0 andψψψ0 is an interior point of���, there existM3 <

∞ for which

Pr(ψ̂ψψ /∈ ���) < δ

2
, k > M3. (12)

Consequently, for any i, j = 1, 2 and k > M :=
max{M1,M2,M3}:
Pr

(
|V (k)

i j (ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ���)
= Pr

(
|V (k)

i j (ψ̂ψψ)−Vi j(ψ̂ψψ)+Vi j(ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ���)
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≤ Pr
(
|V (k)

i j (ψ̂ψψ)−Vi j(ψ̂ψψ)| + |Vi j(ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ���)
≤ Pr

(ε
2
+ |Vi j(ψ̂ψψ)−Vi j(ψψψ

0)| ≥ ε
∣∣∣ ψ̂ψψ ∈ ���)

<
δ

2
, (13)

where the second inequality follows from Equation (11) and the
third from Equation (10). Therefore,

Pr(|V (k)
i j (ψ̂ψψ)−Vi j(ψψψ

0)| ≥ ε)
= Pr

(
|V (k)

i j (ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ ψ̂ψψ /∈ ���
)
Pr(ψ̂ψψ /∈ ���)

+ Pr
(
|V (k)

i j (ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ ψ̂ψψ ∈ ���)
Pr(ψ̂ψψ ∈ ���)

≤ Pr(ψ̂ψψ /∈ ���)+ Pr
(
|V (k)

i j (ψ̂ψψ)−Vi j(ψψψ
0)| ≥ ε

∣∣∣ψ̂ψψ ∈ ���)
< δ,

where the last inequality follows from Equations (12) and (13).
This proves Equation (9) and thus Equation (8) holds.

Once having Equation (8), the remaining steps to prove
Theorem 1 are straightforward. From the second part of Equa-
tion (7) of Lemma 1, we have, as k→∞:

√
k(Bβ̂ββ − Bβββ0)

d−→ N (0,BV (ψψψ0)Bᵀ). (14)

By applying the continuous mapping theorem on Equation (8),
we have as k→∞:

[BV (k)(ψ̂ψψ)Bᵀ]−
1
2

p−→ [BV (ψψψ0)Bᵀ]−
1
2 . (15)

Hence, by Equations (14) and (15) and Slutsky’s theorem,
Theorem 1 is proved. �

Theorem 1 gives the asymptotic distribution of Bβ̂ββ for any
B ∈ R

n×2 of rank n. Specifically, if B is the 2× 2 identity matrix,
then Equation (6) is reduced to the asymptotic distribution of
β̂ββ . If B = (0, 1), then Equation (6) is reduced to the asymptotic
distribution of β̂1, which will be used to construct a test statistic
for the proposed hypothesis test. We state this specific case in
the following corollary.

Corollary 1. Under Assumptions 1 to 3:

√
k
[
V (k)

22 (ψ̂ψψ)
]− 1

2 (
β̂1 − β0

1
) d−→ N (0, 1),

as k→∞. In addition, Z(k) d−→ N (0, 1) as k→∞ under the
null hypothesis H0, where Z(k) := β̂1[k/V (k)

22 (ψ̂ψψ)]
1/2.

Set Z(k) to be the statistic of the hypothesis test. Corollary 1
then implies that the hypothesis test is a Z-test since Z(k)
is asymptotically normal. The p-value of the hypothesis test
asymptotically equals 2�(−|Z(k)|), where� denotes the cumu-
lative distribution function ofN (0, 1). Moreover,H0 is rejected
at the asymptotic significance level α if |Z(k)| ≥ z1−α/2, where
z1−α/2 is the 100(1− α/2)% quantile of N (0, 1), or if the
p-value is smaller than α.

Recall that one can easily extend the SESK to incorporate
multiple stylized models. We therefore extend the hypothesis
test and the related results accordingly as follows. The proof is
similar as that of Theorem 1 and Corollary 1 and is omitted.

Theorem 2. Suppose that 
 distinctive stylized models are
used in SESK (2), i.e., f (x) = (1, q1(x), . . . , q
(x))ᵀ and
βββ = (β0, β1, . . . , β
)ᵀ. Let V (k)(ψψψ) := k(Fᵀ���(ψψψ)−1F )−1 ∈
R
(1+
)×(1+
) for any ψψψ ∈ ���, where F = (1, q1, . . . , q
) ∈

R
k×(1+
). Let B = (0, 1, . . . , 1) ∈ R

1×(1+
). Consider the
hypothesis test

H0 : β1 = β1 = · · · = β
 = 0 versus
H1 : β1 
= 0 or β2 
= 0 or . . . or β
 
= 0.

Let Z(k) := [k/(BV (k)(ψ̂ψψ)Bᵀ)]1/2 · Bβ̂ββ be the test statistic. Then,
Z(k) d−→ N (0, 1) as k→∞, under Assumptions 1 to 3 and the
null hypothesis H0.

Remark 4. Rejecting the null hypothesis in the Z-test only
means that at least one of the stylized models included is use-
ful in capturing the shape of the response surface. It does not,
however, indicatewhich stylizedmodel is the best orwhich com-
bination of these stylized models should be chosen. To quantify
the effectiveness of the stylized models included in SESK, one
can use the K2 statistic presented in Section 3.2 or the informa-
tion criteria like AIC and BIC presented in Section 3.3.

3.2. K2 statistic for effectiveness

In the presence of multiple candidate stylized models, it is desir-
able for the users to have a convenient tool for model selection.
In the context of linear regression, the coefficient of determi-
nation R2 measures how well a model fits the data and can be
interpreted as the proportion of the total variation of the data
explained by the model. However, R2 or other measures based
on the sum of squared errors may not be suitable in our setting
for the following reason. For stochastic kriging, in the absence
of simulation noise, the predicted surface would pass through
exactly the simulation outputs at the design points, inwhich case
the sum of squared errors would be zero. This implies that the
sum of squared errors can be reduced to zero by simply increas-
ing the number of replications at each design point, and thus
cannot reflect the goodness-of-fit of the stylized model. Never-
theless, inspired by R2, we propose a new statistic called K2:

K2 = 1− τ̂
2
S

τ̂ 2O
,

where τ̂ 2S and τ̂ 2O are the MLEs of τ 2 in SESK and OSK,
respectively.

Similar as R2, a large value ofK2 indicates that a large portion
of the variation in the observations Ȳ can be explained by the
stylized model. An intuitive reason is as follows. OSK treats the
response surfaceY(x) as a realization of a second-order station-
ary Gaussian process, which has a constant marginal variance.
In order to capture the highly nonlinear shape of the response
surface for queueing simulation, which often exhibits exploding
behavior, the marginal variance τ 2O in OSK needs to be large.
By contrast, the same process is used to model the residual
surface Y(x)− β1q(x) in SESK. If the stylized model q(x) can
capture the main trend of Y(x), the residual surface would have
much less variation than the original surface does, and thus the
marginal variance τ 2S in SESK would be smaller than τ 2O.
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Remark 5. Consider the following two linear regression mod-
els that are analogous to OSK and SESK, respectively: (i) yi =
cO + σOεi; and (ii) yi = cS + βxi + σSεi, i = 1, . . . , k, where the
εis are independent standard normal random variables. Let
σ̂O, σ̂S, ĉS, and β̂ denote the MLEs. It can be easily shown
that σ̂ 2

O = k−1
∑k

i=1(yi − y)2, where y = k−1
∑k

i=1 yi, and σ̂
2
S =

k−1
∑k

i=1(yi − ĉS − β̂xi)2. Hence, R2 associated with the simple
linear regression is

R2 = 1− sum of squared residuals
total sum of squares

= 1−
∑k

i=1(yi − ĉS − β̂xi)2∑k
i=1(yi − y)2

= 1− σ̂
2
S

σ̂ 2
O
,

which bears a structure similar to K2.

Remark 6. It is well known that the value range of R2 is [0, 1],
but K2 is more subtle. We prove in Appendix A that K2 ∈ [0, 1]
if��� = 0 and θθθ is known. Otherwise, K2 may become negative,
albeit rarely in practice, when the number of design points k
is small. A negative K2 means complete failure of the stylized
model.

We now provide another intuition regardingK2. Let IMSE =∫
MSE∗(x)dx denote the integrated MSE of stochastic kriging

over the entire design space, where MSE∗(x) is given by Equa-
tion (3). Then, IMSES/IMSEO can also be used to measure the
global goodness-of-fit of SESK relative to OSK, where the sub-
script S and O indicate SESK and OSK, respectively. However, it
may be computationally prohibitive to implement this measure
in practice, as it involves a multidimensional numerical integra-
tion and, even to approximate it requires computation of the true
responses at a large number of design points, which would be
excessively expensive.

Nevertheless, we argue heuristically that 1−
(IMSES/IMSEO) is somewhat similar to K2 intuitively. Assume
that the numbers of replications at all design points are suffi-
ciently large so that the simulation errors there are negligible.
Then, it can be shown easily that MSE∗(x0) ≈ 0 if x0 is close to
any one of the design points and that MSE∗(x0) ≈ τ 2 if x0 is far
away from all the design points. Therefore, if the design space
is large and the number of design points is small, then IMSE is
roughly proportional to τ 2, and thus

K2 = 1− τ
2
S

τ 2O
≈ 1− IMSES

IMSEO
.

We stress here that albeit inspired by R2, K2 is not rigorously
derived and should only be considered as a heuristic statistic that
measures the proportion of the total variation of the response
surface explained by the incorporated stylized model. However,
its advantage is the simplicity, since the estimation of τ 2 is nec-
essary for use of stochastic kriging and K2 can be computed
with nearly zero additional cost. Consequently, we suggest that
K2 should not be used alone but as a sanity check to ensure
that conclusions from other statistical tools such as the Z-test
in Section 3.1 and the information criteria in Section 3.3 are
consistent.

3.3. Information criteria

Although we have been focusing on the case of one single styl-
ized model in SESK, multiple stylized models can indeed be
incorporated. Then, the complexity of SESKmetamodelsmay be
different in terms of the number of unknown parameters. So in
addition toK2, which does not account for themetamodel com-
plexity, we suggest using the popular model selection methods
Akaike InformationCriterion (AIC, Akaike, 1974) and Bayesian
Information Criterion (BIC, Schwarz, 1978). Both criteria are
driven by MLE and penalize the number of model parameters
in an effort to avoid model overfitting. Their difference lies in
the form of the penalization. In particular:

AIC = −2
(β̂ββ, τ̂ 2, θ̂θθ )+ 2p,
BIC = −2
(β̂ββ, τ̂ 2, θ̂θθ )+ p ln(k),

where p is the number of unknown parameters and k is the data
size (i.e., number of design points). For example, p = m+ 1
for OSK since βββ = β0, where m is the size of (τ 2, θθθ ), whereas
p = m+ 
+ 1 for SESK,where 
 is the number of stylizedmod-
els incorporated. If several SESK metamodels are available, we
select the one with the smallest AIC or BIC value. Notice that
AIC or BIC can also be used to select the best among several
stylized models if one wants to incorporate one single stylized
model in SESK.

4. An illustrative example:M/G/1 queue

We now consider a simple example to gain insights on the bene-
fits of incorporating stylized models in stochastic kriging, and
demonstrate the proposed measures. Let Y(x) be the steady-
state mean queue length (excluding the customer in service) of
an M/G/1 queue with arrival rate x ∈ (0, 1) and unit service
rate. Suppose that the service times follow the gamma distri-
bution with shape parameter 1/2 and scale parameter 2, so the
squared coefficient of variation of the service time distribution
is 2. It then follows from the Pollaczek–Khintchine formula that
Y(x) = 1.5x2/(1− x). LetQt (x) be the queue length of this sys-
tem at time t . A natural estimator of Y(x) is

ȲT (x) := 1
T

∫ T

0
Qt (x) dt,

the average queue length during T units of simulated time, and
its asymptotic variance σ 2(x) := limT→∞ T Var[ȲT (x)] is given
by Equation (13) of Whitt (1989):

σ 2(x) = x(20+ 121x− 116x2 + 29x3)
4(1− x)4

.

Then, for largeT , ȲT (x)
d≈ N (Y(x), σ 2(x)/T ), where

d≈means
“approximately equals in distribution.” Therefore, we can use
this approximation to generate random samples of ȲT (x) instead
of running steady-state simulation, which is time-consuming
and subject to the initialization bias.

4.1. Benefits of stylizedmodels and validity ofmeasures

To illustrate SESK, we set up an experiment with k = 4 design
points x = 0.2, 0.4, 0.6, 0.8, and allocate n = 20 simulation
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Figure . OSK versus SESK for theM/G/1 queue.

replications to each of them. Each replication is generated from
N (Y(x), σ 2(x)/T )withT = 2500. Based on the synthetic data,
we compute the estimates (�̂��, β̂ββ, τ̂ 2, θ̂θθ ), the plug-in predictor̂̂Y (x), and the MSE estimator M̂SE(x).

Consider three stylized models: q(1)(x) = x2/(1− x),
q(2)(x) = 3x9, and q(3)(x) = 10(x− 0.52)2. Notice that q(1)(x)
is the steady-state mean queue length in anM/M/1 queue with
arrival rate x and unit service rate, which is obviously a good
approximation for the M/G/1 queue. As a rough approxima-
tion, q(2)(x) somewhat captures the trend of Y(x), albeit not
as closely as does q(1)(x). Lastly, q(3)(x) appears irrelevant to
Y(x). For instance, q(3)(x) is not an increasing function as
Y(x). Notice that all these stylized models are in closed form,
so the computational cost is negligible compared with running
the simulation model.

Figure 2 shows that OSK completely fails to capture the
exploding behavior of Y(x) as x approaches one. By contrast,
incorporating the response surface of theM/M/1 queue q(1)(x)
yields a predicted surface almost identical to the true surface.
Of course, this is an ideal case, since q(1)(x) happens to be a
multiple of Y(x). A more realistic situation is demonstrated by
q(2)(x), which captures the monotonicity but not the explod-
ing behavior of Y(x). Surprisingly, although q(2)(x) is merely
a rough approximation, it dramatically enhances the prediction
accuracy of SESK relative to OSK. This shows that SESK is fairly
robust with respect to the choice of the stylizedmodel. Nonethe-
less, if the incorporated stylized model has little similarity to the
true surface, which is the case for q(3)(x), SESK does not show
significant improvement over OSK.

Table 1 confirms the above findings. The Z-test suggests that
q(1)(x) and q(2)(x) are significant for explaining the variation in
Y(x), whereas q(3)(x) is not. Moreover, the three statistics K2,

AIC, and BIC all indicate that q(1) and q(3)(x) are the best and
worst among the three stylized models, respectively. In particu-
lar, K2 ≈ 1 for q(1)(x) aligns with the fact that q(1)(x) perfectly
captures the trend of Y(x), making the variation of the residual
surface Y(x)− β1q(1)(x) negligible.

Albeit artificial, this numerical example demonstrates that
by incorporating a reasonable stylized model, SESK can pro-
duce substantially more accurate predictions than OSK, even
with only a small number of design points. More importantly,
SESK is relatively robust and does not require the incorpo-
rated stylized model to have a high degree of similarity to
the true response surface. Finally, the proposed Z-test and K2

statistic can diagnose the usefulness and effectiveness of a can-
didate stylized model for the small sample case, producing
findings that are consistent with the popular tools AIC and
BIC.

4.2. Comparisonwith gradient-enhanced stochastic
kriging

Another approach to enhancing stochastic kriging is to incor-
porate gradient information. We now compare SESK with the
Stochastic Kriging with Gradient (SKG) proposed in Chen et al.

Table . OSK versus SESK for theM/G/1 queue.

Z-test

Metamodel Z(k) p-value K2 AIC BIC

OSK — — — . .
SESK with q(1) . <. . − . − .
SESK with q(2) . <. . . .
SESK with q(3) . . . . .
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Figure . SKG versus SESK for theM/G/1 queue.

(2013) in terms of prediction accuracy; see Qu and Fu (2014) for
a different way of incorporating gradient estimates in stochastic
kriging that has a comparable performance with SKG. However,
in order that gradient-enhanced stochastic kriging be feasible,
one needs to be able to compute the gradient estimates with a
negligible additional cost once the responses of the simulation
model have been observed. To that end, the simulation model
ought to have a relatively simple structure, so that techniques
such as infinitesimal perturbation analysis or the likelihood
ratio method can be applied to efficiently compute the gradient
estimates. However, the general simulation models considered
in this article are too complex to yield efficient gradient estima-
tion; see examples in Section 6. One then often resorts to the
Finite Difference (FD) method, which amounts to a substantial
computational overhead by running the simulation model at
nearby locations and tends to incur significant estimation errors.

We conduct the comparison between SESK and SKG for
the M/G/1 queue. To imitate the usual situation in practice
where the simulation model is a black-box and the user does
not have a means to compute the gradients efficiently, we apply
FD to estimate the gradients. In particular, associated with
each simulation replication at each design point, we compute
a FD gradient estimate based on the central difference with
step size 0.01. The results are presented in Figure 3. The left
panel shows the predicted surface of SKG, whereas the right
panel shows the predicted surface of SESK with a coarse stylized
model q(2). Clearly, SESK has better performance in terms of
extrapolating the exploding response surface. This is because
the gradient estimates only provide local information about the
shape of the surface, whereas the stylized model provides global
information. In addition, using central differences for gradient
estimation, SKG would run the simulation model three times as
many as SESK. Therefore, if the stylized model is well chosen,
then SESK can produce a more accurate prediction at lower
computational cost than does SKG.

5. Constructing stylizedmodels for queueing
networks

Clearly, there is no unique rule for constructing stylized models
for queueing simulation. A stylized model with higher accu-
racy is generally more complex and more computationally
expensive. We remark here that the quantitative accuracy of the
stylized model is not our uppermost concern. Instead, we focus
on the simplicity and convenience of the approaches, since a

basic representation of the qualitative behavior of the response
surface may suffice.

Suppose that the simulation model is an open queueing
network that consists of a finite number of stations to provide
service. External customers may enter the network via each sta-
tion. A customer that completes the service at one station may
be routed to another to receive further service or leave the net-
work. In this section, we propose several simple methods for
constructing stylized models for such queueing networks. The
resulting stylized models either yield closed-form solutions or
can be computed numerically with a negligible cost relative to
the simulation model.

5.1. Jackson network

The Jackson network (Jackson, 1963) is a classic stylized queue-
ing model. It assumes that the external arrivals to each station
follow aPoisson process, that the service times at each station are
independent and exponentially distributed, and that each sta-
tion has an infinite capacity. Moreover, the customers are routed
randomly according to prespecified probabilities. The Jackson
network is highly analytically tractable. Many performance
measures such mean waiting time and mean number-in-system
have closed-form expressions. Analogous to the M/G/1 queue
in Section 4, one may consider to use the Jackson network
as the stylized model in SESK if each station of the original
queueing network has stationary external arrivals, independent
and identically distributed service times, and infinite capacity.

5.2. Finite capacity and blocking

Service capacity is often a design variable that needs to be opti-
mized in practice to balance system performance and operating
costs. Hence, networks with infinite capacity, such as the Jack-
son network, are not suitable to approximate such real systems.
Notice that finite capacity queueing networks have potential loss
and temporary blocking of customers; see Balsamo et al. (2013,
§2.2).

In queueing theory, there is a class of analytically tractable
queueing networks that permit the so-called “product-form”
solutions. Examples include Jackson networks (Jackson, 1963)
and Kelly networks (Kelly, 1979); see Chao (2011) for an recent
overview. Such networks can be decomposed into isolated
stations and their behavior can be analyzed separately. This
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suggests that if the simulation model is a finite-capacity queue-
ing network, then one may simply consider the decomposition
approximation as the stylized model for SESK. The only non-
trivial calculation required is to properly adjust the parameters
such as arrival rates and service rates to approximate the inter-
dependence between the stations in the original network. We
provide in Appendix B a relatively simple way for parameter
adjustment based on the approach in Korporaal et al. (2000).
The case study in Section 6.1 demonstrates the use of the
stylized model constructed in this way to study patient flow in
a hospital. We refer interested readers to Osorio and Bierlaire
(2009) for a more sophisticated approximation scheme.

5.3. Time-varying arrivals

The arrival process is often nonstationary in practice. A natural
approach to addressing time-varying arrivals is the pointwise
stationary approximation (Whitt, 1991). In this approach, the
time-varying arrival rate process is approximated by a piece-
wise constant function. Within each piece, the arrival rates are
considered as a constant equal to the average value. The perfor-
mance measure of interest can be calculated independently for
each piece and then aggregated by taking a weighted average,
where the weights may be approximated by the total number of
customers in each piece. The advantage of this approach is its
simplicity. However, the performance of this approach depends
critically on how the pieces are set in terms of both the number
of pieces and the length of each piece. In addition, during the
peak time of the arrivals, the average arrival rate within a piece
may exceed the total service rate, implying an unstable queue.

Another approach is the fluid approximation that is built on
heavy traffic analysis; see Gautam (2012, §8) for an introduction
on the subject.We provide in Appendix C a simple fluid approx-
imation for time-varying queues. Both of the above approaches
for constructing stylized models for time-varying arrivals will
be demonstrated in the case study in Section 6.2 that addresses
the dock allocation problem at an air cargo terminal.

6. Case studies

We consider two real-world examples of queueing simulation
in this section, each of which has a distinctive feature. The
first example stems from the healthcare industry and involves
a queueing network with finite capacity in each of its stations
which induces blocking behavior. The second example, on the
other hand, comes from the logistics industry and involves time-
varying arrival processes.We demonstrate, through the two case
studies, that: (i) reasonable stylized models can be constructed
easily for a large class of queueing networks; (ii) prediction
accuracy of stochastic kriging can be significantly enhanced
by incorporating such stylized models; (iii) the proposed mea-
sures can diagnose and quantify the improvement properly.
All the numerical experiments (including the M/G/1 queue in
Section 4) are implemented in MATLAB R2015a (Intel i7-3770
CPU @ 3.40GHz, 8 GB RAM). The code is available at simopt.
github.io. In the implementation, we have taken advantage of the
open source code for stochastic kriging (stochastickriging.net).

Table . Parameter configuration of the hospital.

i         

γi/h . . . . . . . . .
μi/h . . . . . . . . .
ci         

6.1. Case study 1: Patient flow in a hospital

This problem is adopted from Osorio and Bierlaire (2009). The
hospital of interest has nine medical units (i.e., stations), each of
which has a different number of beds. The patients and the beds
are considered as customers and servers, respectively. For med-
ical unit i, i = 1, . . . , 9, the external patients arrive following a
Poisson process with arrival rate γi, the service time of each bed
follows the exponential distribution with rate μi, and the num-
ber of beds is ci; see Table 2. The hospital as a whole is modeled
as a queueing network and the patients are routed among the
medical units based on the transition probability matrix given
in Table 3. Each medical unit is bufferless having no waiting
room, so the capacity of each unit is the same as the number
of beds. Due to the finite capacity, a patient who finishes their
service in one unit will be blocked at their current location, if
the unit to which they should be routed is full. In this case, the
patient waits at their current location until there is an opening in
the target unit. While being blocked, the patient keeps occupy-
ing their bed and it is unavailable for other patients. If there are
multiple blocked patients waiting to enter the same unit, they are
unblocked on a first-blocked-first-released basis. This blocking
mechanism is known as blocking-after-service (Balsamo et al.,
2013, §2.2). The performance measure of interest Y(x) is the
steady-state sojourn time in the hospital (length of stay), where
x ∈ R

9 is the vector of the number of beds in the nine medical
units.

Wewant to predictY(x) over awide range of x, say, up to 60%
difference from the current configuration, i.e., xi ∈ (1± 60%)ci,
i = 1, . . . , 9. To implement the metamodels, we consider a sim-
ple experiment design. We alter the value of each xi while keep-
ing the other variables fixed at the current configuration, namely
the design point is of the form (c1, . . . , ci−1, xi, ci+1, . . . , c9).
The altered values are chosen to be centered around the current
configuration of the number of beds in each station; see the
row of “Design Point” in Table 4. Including these altered con-
figuration and the current configuration of the number of beds,
we obtain 23 design points in total and use them to construct
the metamodels. At each design point, the simulation model
is run with 10 replications with warm-up length 10 000 hours

Table . Transition probability matrix.

i         

 — — — . . — — . —
 — — — . — — — . —
 — — — . . — — — .
 . . . — . . . . —
 . . . . — . — — —
 . — — . . — — — —
 . — . . — — — . —
 — — — — — — . — —
 — — — . — — . . —
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Table . Experimental design. The numbers in the table are the possible values of
xi . The design points given here do not but should include the current configuration
(c1, . . . , c9).

i         

Design point ,  ,  ,  ,
,

,
,

,  ,  ,  , 

(c1, . . . , ci−1, xi, ci+1, . . . , c9) , , 
Evaluation point ,  ,  ,  , , , , ,  ,  ,  , 
(x1, . . . , x9)  

and total run length 50 000 hours. The average run time of the
simulation model at one design point is about 240 seconds.

To apply SESK, we construct a simple stylized model as fol-
lows. We decompose the finite-capacity queueing network into
isolated independent stations andmodel each station as a finite-
capacity multi-server queue. The only non-trivial calculation
required is to adjust the structural parameters of each station
(e.g., arrival and service rates) properly in order to approxi-
mate the interdependence between the stations in the original
network. The whole construction is based on the approach of
Korporaal et al. (2000), and the details are given in Appendix B.
The average run time of evaluating the stylized model at one
design point is about 0.06 second, thereby negligible compared
with the simulation model.

To evaluate the prediction accuracy, we consider the Root
Mean Squared Error (RMSE):

RMSE =
√∑

x0∈C

1
|C| (

̂̂Y (x0)− Y(x0))2, (16)

and the Mean Absolute Percentage Error (MAPE):

MAPE = 100
|C|

∑
x0∈C

∣∣∣∣∣ ̂̂Y (x0)− Y(x0)
Y(x0)

∣∣∣∣∣ , (17)

where C denotes the set of predicted points and |C| is its cardi-
nality. However, the total number of points in the entire domain
is large and to estimate the “true” response at any point requires
extensive simulation. It is thus computationally prohibitive to
use all these points to evaluate the prediction quality of themeta-
models. Instead, we select several representative values for each
xi, and use the full factorial design to form the grid for the eval-
uation purpose. We call these points the evaluation points; see
the row of “Evaluation Point” in Table 4. The total number of
evaluation points is |C| =∏9

i=1 mi = 1152, where mi is the

Table . OSK versus SESK for patients’mean sojourn time.

Hypothesis test

Metamodel Z(k) p-value K2 AIC BIC RMSE (h) MAPE (%)

OSK — — — . . . .
SESK . < 0.001 . . . . .
Stylized Model — — — — — . .

number of representative values of xi. For each of the 1152 eval-
uation points, we estimate the “true” response through running
the simulation for sufficiently many replications so that the sim-
ulation noise is negligible (e.g., the half-width of the 95% confi-
dence interval is less than 0.05 hour).

The numerical results are shown in Table 5. We can find that
both the RMSE and MAPE in SESK are smaller than those in
OSK, which shows that the SESK gives better fitting. On the
other hand, the results of the hypothesis test strongly reject H0,
suggesting the usefulness of the stylized model. The K2 is 0.82,
showing high explaining power of the stylized model. In addi-
tion, the AIC and BIC in SESK are much smaller than those in
OSK. All themeasures are consistent to the actual improved per-
formance by incorporating the stylized model.

For better visualization, we plot in Figure 4 the pre-
dicted patients’ mean sojourn time as a function of x4
while keeping the other variables fixed, i.e., Y(x) for
x ∈ {x|x = (4, 8, 5, x4, 14, 4, 4, 10, 6)ᵀ}. Notice that in this
set, the point with x4 = 18 happens to be a design point at
which the simulation model is executed. We see clearly that the
prediction accuracy of OSK is satisfactory for the flat part of
the response surface, which is expected. However, it does not
capture the steep, nonlinear part at the left end of the curve.
This is the place where the stylized model makes an impact and
considerably improves the prediction accuracy.

6.2. Case study 2: Dock allocation at an air cargo terminal

This is a practical problem encountered by one of the largest air
cargo terminals worldwide. A critical resource for daily opera-
tions of the terminal is shipping/receiving docks, where cargoes
are delivered and picked up at the docks by trucks of forward-
ing agents. There are primarily four types of cargo at this termi-
nal: (i) pallet bulk cargo; (ii) general bulk cargo; (iii) perishable
cargo; and (iv) prepacked cargo. Each type of cargo demands a
distinctivematerial handling system that does not apply to other

Figure . Predicted patients’mean sojourn time as a function of x4 .
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Figure . Time-varying arrival rates of the four cargo types.

types. Hence, the management of the terminal needs to deter-
mine the optimal scheme for allocating the total available docks
to the four types of cargo so that the average waiting time of the
trucks is minimized.

The terminal operates continuously (24 hours per day, 7 days
perweek). The historical data indicate that the arrival rates of the
four types of cargoes are time-varying (Figure 5) and that their
service times follow different probability distributions (Table 6).
The simulation model of interest here is the terminal consisting
of four independent Mt/G/s queues, each of which models the
process of handling one type of cargo with s allocated docks. Let
x = (x1, x2, x3, x4)ᵀ be the numbers of docks that are allocated
to the four types of cargoes. The performance measure of inter-
est, Y(x), is the long-run average waiting time of the trucks.

We consider two stylized models. One (i.e., stylized model
1) is the stationary approximation, that is, queue i is approxi-
mated by anM/M/si queue with arrival rate λ̄i and service rate
μi, where λ̄i is the average arrival rate and si = xi, i = 1, . . . , 4.
The other (i.e., stylized model 2) is based on the fluid approx-
imation of time-varying queues and is detailed in Appendix C.
The average run time of evaluating the two stylized models at
one design point is about 0.002 and 0.003 second, respectively.

... Evaluating prediction accuracy
The terminal has 111 available docks in total, so x1 + x2 + x3 +
x4 ≤ 111. To ensure stability of the four queues, the number
of docks must satisfy λ̄i < μixi, i = 1, . . . , 4. Specifically, this
requirement translates to {x1 ≥ 5, x2 ≥ 61, x3 ≥ 5, x4 ≥ 21}. To
evaluate the prediction accuracy, we calculate RMSE defined
in Equation (16) and MAPE defined in Equation (17), for all
points in the feasible region. Hence, |C| = 8855. For each evalu-
ation point, we estimate the “true” response by extensive sim-
ulation as follows. The run length of the simulation model is

Table . Service time distributions and dock allocation. WEIB(a, b) and
GAMM(a, b) denote the Weibull and Gamma distribution with scale parameter a
and shape parameter b, respectively.

Cargo type Service time distribution (min) Number of docks

 WEIB(., .) x1
  + WEIB(., .) x2
  + GAMM(., .) x3
  + GAMM(., .) x4

Table . OSK versus SESK for trucks’meanwaiting time based on one typical design.

Z-test
RMSE MAPE

Metamodel Z(k) p-value K2 AIC BIC (min) (%)

OSK — — — . . . .
SESK (stylized
model )

. <. . . . . .

SESK (stylized
model )

. <. . . . . .

SESK (stylized
model  & )

. <. . . . . .

Stylized model  — — — — — . .
Stylized model  — — — — — . .

set sufficiently long (e.g., 25 days = 600 hours) and the first 10
days is considered as the warm-up period in order to reduce
the initialization bias. Moreover, each simulation is replicated
for sufficiently many times so that the simulation noise is small
(e.g., the half-width of the 95% confidence interval is less than
0.1 minute).

Since the feasible region is not a hypercube, to find a good set
of design points we adopt the space-filling approach detailed in
Forrester et al. (2008, §1.4.3), while considering uniform ran-
dom designs instead of random Latin hypercubes. Given the
total number of design points, the optimal design is defined via
maximizing the smallest pairwise distance between the design
points (Morris and Mitchell, 1995). However, to identify the
optimal design is computationally infeasible in general, so cer-
tain random search procedures are often used to find the best
design up to a computational budget. We assume that the num-
ber of design points is 40 and repeat the above space-filling
approach 40 times, each using a different random seed and
resulting in a different design upon termination.We conduct the
experiment for each of the 40 designs. To produce the simula-
tion outputs for constructing the metamodels, normally at each
design point the simulation model is replicated 30 times with a
run length of 8 days and warm-up period of 5 days. For design
points at which the estimated standard deviation of the simu-
lation output is beyond 1 minute, simulation effort is increased
so that it is controlled around 1 minute. The average run time
of the simulation model at one design point is about 96 sec-
onds. Hence, the computational effort for the two considered
stylized models (0.002 and 0.003 second run time) is indeed
negligible.

In addition to the single-stylized-model setup, we also con-
sider the case of incorporating both stylized models in SESK,
in which case the trend term becomes β0 + β1q1(x)+ β2q2(x).
The numerical results based on one typical set of design points
are presented in Table 7, and those based on all the 40 sets of
design points are presented in Table 8.

Table . OSK versus SESK for trucks’mean waiting time based on  designs.

RMSE (min) MAPE (%)

Krigingmodel Min Max Mean Median Min Max Mean Median

OSK . . . . . . . .
SESK (stylized model ) . . . . . . . .
SESK (stylized model ) . . . . . . . .
SESK (stylized model  & ) . . . . . . . .
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Figure . Predicted trucks’mean waiting time as a function of x2 . Based on one typical design.

Clearly, the stationary approximation is very rough for
queueing systems with time-dependent characteristics. Despite
its crudeness, it can significantly improve the prediction accu-
racy of the stochastic kriging metamodel. The fluid approxi-
mation is a much better stylized model, suggested by both the
model selection tools (K2, AIC, and BIC) and themeasurements
for prediction accuracy (RMSE andMAPE). Incorporating both
stylized models provide even more accurate predictions.

In addition, based on the same design as that of Table 7,
we plot in Figure 6 the predicted long-run mean wait-
ing time of different metamodels as a function of x2, i.e.,
Y(x) for x ∈ {x|x1 = 6, x2 = 62, . . . , 74, x3 = 10, x4 = 95−
x2}. Notice that (6, 69, 10, 26) in the set happens to be a design
point at which the simulation model is executed. As expected,
OSK does not perform well and stylized models greatly improve
the prediction accuracy. In particular, stylized model 1 roughly
captures the trend of the response surface and thus provides
noticeable improvement; stylized model 2 is more accurate and
the improvement it causes is substantial, making the predicted
responses almost identical to the true responses. Incorporating
both stylized models further improves the prediction accuracy,
as shown by the better fitted surface and narrower±1.96

√
M̂SE

intervals. Notice also that in terms of the prediction, SESK with
stylized model 1 incorporated is highly accurate for x2 > 67,
whereas SESK with stylized model 2 incorporated is much bet-
ter for x2 ≤ 67. Hence, incorporating both stylized models is, to
some extent, analogous to model averaging (Hastie et al., 2009,
Chapter 8).

... Searching for optimal allocation
To find the optimal dock allocation is a Discrete Optimization
via Simulation (DOvS) problem. Random search algorithms are

often used to solve such problems; see Andradóttir (2006) for
an overview. In particular, the Gaussian Process-based Search
(GPS) algorithm developed in Sun et al. (2014) is a state-of-
the-art globally convergent algorithm. In the same vein as OSK,
the GPS algorithm treats the response surface Y(x) as a real-
ization of a second-order stationary Gaussian process. In each
iteration of the algorithm, based on the constructed Gaussian
process one can calculate the probability that a solution is bet-
ter than the current sample-best solution. This probability is
then used to build a sampling distribution for the next design
point to be sampled. It is shown in Sun et al. (2014) that in
terms of total computational time including both running time
of the simulation model and computational overhead, the GPS
algorithm has significantly better performance than other pop-
ular algorithms, such as the global random search algorithm
of Andradóttir (1996) and the sequential kriging optimization
algorithm of Huang et al. (2006), for typical DOvS problems.
We now use the dock allocation problem to illustrate how styl-
ized models can further enhance the performance of the GPS
algorithm.

Notice that stylized models can be integrated in the GPS
algorithm by revising the algorithm so that it treats the resid-
ual surface Y(x)− f (x)ᵀβββ as a realization of a second-order
stationary Gaussian process. Then, all the calculations involved
in the GPS algorithm can be easily modified and we omit the
details. We call the new algorithm Stylized-model-Enhanced
GPS (SEGPS).

To search for the optimal dock allocation, we use the
fluid approximation as the stylized model, and initially set
βββ = (0, 1)ᵀ and select three design points randomly, at each of
which the simulation model is run to generate five independent
observations. In each iteration of the SEGPS algorithm, we con-
struct a Gaussian process based on all the previous simulation
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Figure . DOvS for dock allocation: GPS versus SEGPS.

outputs. Then, we construct a sampling distribution and from
it we sample the next three design points, at each of which
the simulation model is replicated for five times. For every
five iterations (i.e., 15 design points), the value of βββ is updated
through linear regression. The whole algorithm is stopped after
90 design points are visited, so the total number of observations
is 450 upon termination.We repeat the experiment 40 times and
compute the average estimated optimal value as a function of
the number of observations. For comparison, the original GPS
algorithm is also implemented in the same manner with the
only difference that there is no stylized model f (x) (thus also
no updating aboutβββ). Figure 7 shows that the SEGPS algorithm
converges significantly faster than the GPS algorithm.

7. Conclusions

We propose in this article a simple, effective approach to
improve the performance of stochastic kriging for queueing
simulation. By incorporating stylized models that provide
useful information about the shape of the unknown response
surface, we demonstrate that the prediction accuracy can
be improved substantially through two representative case stud-
ies. The stylized models need not to be highly accurate. Instead,
the performance of SESK is fairly robust relative to the choice
of the stylized models. This feature is particularly appealing
to practitioners. Finally, we briefly illustrate that in addition
to improving prediction accuracy, incorporation of stylized
models can accelerate the convergence of the GPS algorithm
for DOvS problems. We believe that the same idea should be
able to extend to other algorithms for more general simulation
optimization problems. We leave it to future investigation.
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Appendix

A1. Value range of K2

If��� = 0, the log-likelihood function (5) reduces to


(βββ, τ 2, θθθ ) = −k
2
ln(2π)− 1

2
ln |τ 2R(θθθ )+���| − 1

2
(Ȳ − Fβββ)ᵀ

×[τ 2R(θθθ )+���]−1(Ȳ − Fβββ)

= −k
2
ln(2π)− k

2
ln(τ 2)− 1

2
ln |R(θθθ )|

− 1
2τ 2

(Ȳ − Fβββ)ᵀR(θθθ )−1(Ȳ − Fβββ).

Furthermore, if θθθ is known, it is easy to see that the maximizer
(β̂ββS, τ̂

2
S ) = argmaxβββ,τ 2 
(βββ, τ

2, θθθ ) satisfies:

kτ̂ 2S = (Ȳ − Fβ̂ββS)
ᵀR(θθθ )−1(Ȳ − Fβ̂ββS).

It follows that


(β̂ββS, τ̂
2
S , θθθ ) = −

k
2
(ln(2π)+ 1)− 1

2
ln |R(θθθ )| − k

2
ln(̂τ 2S ).

(A1)
Moreover, notice that


(β̂ββS, τ̂
2
S , θθθ ) = max

β0,β1,τ 2

((β0, β1), τ

2, θθθ ) ≥ max
β0,τ 2


((β0, 0), τ 2, θθθ )

= 
(β̂ββO, τ̂
2
O, θθθ ).

Then, by Equation (A1), we conclude that 0 ≤ τ̂ 2S ≤ τ̂ 2O, and thus
0 ≤ K2 ≤ 1. �

A2. Decomposition of finite-capacity queueing networks

To facilitate the presentation of the stylized queueing model
used in Section 6.1, we first introduce some notations. Let K be
the number of stations in the network. For station i, let γi, λi,
di,μi, and ci denote its external arrival rate, internal arrival rate,
departure rate, service rate, and number of servers, respectively,
i = 1, . . . ,K. After service completion at station i, a customer
is routed to station j with probability pi j or leaves the network
with probability pi0 = 1−∑K

j=1 pi j.
The stylized queueing model for the finite-capacity queueing

network with bufferless stations and BAS blocking mechanism
in Section 6.1 is constructed as follows. Following the method
in Korporaal et al. (2000), we decompose the network into K
isolated independent stations, each of which is a queue of type
(M(γ )+M(λ))/M(ν)/s/N. The performance measure of the
network is then approximated by aggregating that of each iso-
lated station. Here, s is the number of servers, N is the buffer
size, i.e., the maximum queue length, andM(ν)means the ser-
vice time follows the exponential distribution with mean 1/ν.
Moreover,M(γ ) andM(λ) represent two independent Poisson
arrival processes with arrival rates γ and λ, formed by the exter-
nal and internal customer arrivals, respectively. We differentiate
two types of customer loss. An external customer is considered
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a loss if he or she finds all s servers occupied upon his or her
arrival. By contrast, an internal customer is considered a loss
if he or she finds all s servers and all N waiting positions are
occupied upon his or her arrival. Notice that the number of cus-
tomers in this queueing model forms a finite-state birth-death
process, so its steady-state performance measures can be calcu-
lated easily. We omit the details and present the results below.

Proposition A1. Let {πi : i = 0, 1, . . .} be the steady state
distribution of the number of customers in an (M(γ )+
M(λ))/M(ν)/s/N queue. Then,

πi =
⎧⎨⎩

(
γ+λ
ν

)i
1
i!π0, if 0 ≤ i ≤ s,(

γ+λ
ν

)s
1
s!

(
λ
sν

)i−s
π0, if s+ 1 ≤ i ≤ s+ N and N ≥ 1,

where,

π0 =

⎧⎪⎪⎨⎪⎪⎩
1/

[∑s
i=0

(
γ+λ
ν

)i
1
i! +

(
γ+λ
ν

)s
1
s!

∑N
i=1

(
λ
sν

)i]
, if N ≥ 1,

1/
[∑s

i=0
(
γ+λ
ν

)i
1
i!

]
, if N = 0.

Let L(γ , λ, ν, s,N), Q(γ , λ, ν, s,N), BE(γ , λ, ν, s,N), and
BI(γ , λ, ν, s,N) denote the mean number of customers in sys-
tem, mean queue length, loss probability of external customers,
and loss probability of internal customers in steady state, respec-
tively. Then,

L(γ , λ, ν, s,N) =
s+N∑
i=1

iπi,

Q(γ , λ, ν, s,N) =
{∑s+N

i=s+1(i− s)πi, if N ≥ 1,
0, if N = 0,

BE(γ , λ, ν, s,N) =
s+N∑
i=s
πi,

BI(γ , λ, ν, s,N) = πs+N .
Wenowdetermine the parameters for each isolated (M(γ )+

M(λ))/M(ν)/s/N queue. Following Korporaal et al. (2000), we
give the following heuristic iterative algorithm. Linear interpo-
lation (of performance measures) are applied to deal with non-
integer s and N.

(i) Specify a small ε > 0. Set n = 0 and specify an initial
guess of the loss probability b(0)j (e.g., 0). Let ν j = μ j ,
s j = c j, and Nj =

∑K
i=1 ci pi j, for j = 1, . . . ,K.

(ii) Update the parameters via the following equations

d j = γ j(1− b j)+
K∑
i=1

di pi j, j = 1, . . . ,K,

λ j =
K∑
i=1

dipi j, j = 1, . . . ,K,

s j = c j −
K∑
i=1

d j p ji

di
Q(γi, λi, νi, si,Ni), j = 1, . . . ,K,

b j = BE(γ j, λ j, ν j, s j,Nj), j = 1, . . . ,K.

(iii) If max j=1,...,K |b j − b(n)j | < ε, stop. Otherwise, let

b(n+1)j = b(n)j +b j

2 and n← n+ 1; go to step (ii).

(iv) Compute ν j for j = 1, . . . ,K via

1
ν j
= 1
μ j
+

∑
i∈{i|p ji>0}

BI(γi, λi, μi, si,Ni)λi

d jμisi
.

After the parameters of each isolated (M(γ )+
M(λ))/M(ν)/s/N queue are determined, the mean sojourn
time S of the network can be computed via Little’s law:

K∑
j=1

L(γ j, λ j, ν j, s j,Nj) = S
K∑
j=1
γ j(1− b j).

A3. Fluid approximation of time-varying queues

We first use anMt/M/s queue as a simple approximation of the
originalMt/G/s queue in Section 6.2. LetX (t ) denote the num-
ber of customers in the system at time t . Then, X̄ (t ), the fluid
approximation toE[X (t )], can be computed efficiently; seeGau-
tam (2012, §8.4). Furthermore, we propose the following heuris-
tic approach for approximating the long-run mean waiting time
of the time-varying queue. Suppose that the arrival rate is cyclic
with period T . For example, in the dock allocation problem in
Section 6.2, the arrival rates of cargoes to an air cargo terminal
cycle with a 24-hour period. For a customer who arrives at time
t , we approximate his or her expected waiting time in queue,
WQ(t ), by

WQ(t ) ≈ 1
sμ

[X̄ (t )− s+ 1]+, (A2)

where [x]+ = max{0, x}. The interpretation of this approxima-
tion is as follows. If there is at least one idle server upon his or
her arrival, i.e., X (t ) ≤ s− 1, then the customer does not need
to wait. Otherwise, he or she needs to wait for X (t )− (s− 1)
customers to depart the system. Since all the s servers are work-
ing, the departure rate is sμ, so the waiting time is [X (t )− (s−
1)]/(sμ).

To approximate the long-run mean waiting time, we aver-
age the expected waiting times of all the customers that arrive
during a cyclic period. Specifically, we apply a piecewise con-
stant approximation for the arrival rate process. Suppose that
the period [0,T ] is decomposed into L pieces, {[t
−1, t
) : 
 =
1, . . . , L}, with t0 = 0 and tL = T . Suppose that piece 
 has aver-
age arrival rate λ̄
. Then, the mean number of arrivals dur-
ing [t
−1, t
) is approximately (t
 − t
−1)λ̄
. We assume that
the arrival times of these customers are evenly distributed on
[t
−1, t
) and let ξ
 denote the collection of these arrival times,
that is,

ξ
 =
{
t
−1 + i

1
λ̄


∣∣∣ i = 0, 1, . . . , �(t
 − t
−1)λ̄
� − 1
}
,

where �·� is the round function that returns the nearest inte-
ger. Then, we approximate the long-runmean waiting time,WQ,
by

WQ ≈ 1
|ξξξ |

∑
t∈ξξξ

WQ(t ),

whereWQ(t ) is approximated by Equation (A2), ξξξ :=⋃L

=0 ξ


and |ξξξ | denotes its cardinality.
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