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E-Companion to “Ranking and Selection with Covariates for
Personalized Decision Making” by Shen, Hong and Zhang

EC.1. Proof of Lemma 1
The following Lemma is a more general version of Lemma 1 in §3. Therefore we only provide
the proof of Lemma and remark that Lemma 1 is a special case. Also note that Lemma [EC.1

is used directly in the proof of Theorem 2.

LEMMA EC.1. For each j=1,...,m, let Y (x;) = ]38 + e(x;), where B,z; € R and e(x;) ~
N(0,0%). Suppose that e(xy),...,e(xy) are independent. Let Yi(x;),Ya(x;),... be independent
samples of Y (x;). Let T be a set of random variables independent of 3, Yi(x;) and of {Yi(x;) : £>
n+1}, for all j=1,...,m. Suppose N; >n is an integer-valued function of T and no other random
variables. Let Y; = Nt Zf;l Y(x;), Y =(Yi,...,Y,)T, X =(x1,..., )7, B=(XTX) XY, and
¥ =Diag(c}/Ny,...,0%/N,.). Then, for any x € R?,

(i) 27B|T ~ N(z78,zT(XTX) ' XTSX(XTX) 'x);
(ii) Al e
VaT(XTX) XX (XTX)

Proof. For part (i), by the definition of B, it suffices to show that ?‘T ~N(XB,X). We first

notice that Y (x;) ~ N(x]8,07). Since T is independent of }_, | Yi(x;),

> Yi(w))

On the other hand, since 7" is independent of {Y;(x;):¢>n+ 1} and N; is a function only of T,

Ny

> Yi(w))

l=n+1

Since Y, Yy(x;) and Zf:fnﬂ Y,(z,) are independent,

is independent of T' and has the standard normal distribution.

T ~ N(nz]B,no?).

T ~ N((N; —n)zlB,(N; —n)o?).

J

Ny

T:]\lfj ;Ye(%)Jr > Yi(xy) ’T ~ N (2]8,07/N;) -

l=n+1

Y,

Notice that }/}1, e ,}Afm are independent conditionally on T, so lA"T ~N(X3,%).
For part (ii), let R
B —x73
T /(XX XTSX (AT Iz
then V[T ~ N (0,1) by part (i). Notice that P(V < v|T) = ®(v) is not a function of T for any v, so
V is independent of T. [
REMARK EC.1. It is easy to see that Lemma 1 in §3 is a special case of Lemma with

o1 =+"=0, =0 andN1=~"=Nm:N-
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EC.2. Computing h in High Dimensions
If X is high-dimensional, the numerical integration in (4) for computing h suffers from the curse of
dimensionality. For instance, the error in the trapezoidal rule for d-dimensional numerical integration

is O(n=%%) in general. One solution is the Monte Carlo method. Let

= h h h s)as -
fl@,h) '_/o /0 ® (\/(nom—d>(t_1—i—S_l):I:T(XTX)_l:I:) () ] i,

and generate n i.i.d. samples of X, @y,...,x,. Then, E[f(X,h)], the left-hand side of (4), can
be approximated by n='>"" | f(z;, h) with error O(n~'/2). So the Monte Carlo method is more
efficient when d > 4. We can then solve n='>"" | f(x;,h) =1 — « for h by using the MATLAB

built-in root finding function fzero.

Another approach to computing A in high dimensions is the stochastic approximation method (Rob-+
bins and Monro|[1951)). Given an initial value ho > 0, define h,, 1 =II{h, — an(f(xn, hn) — (1 — @)},
where IT{-} denotes a projection that maps a point outside [0,00) to [0,00) (e.g., II{-} =] - || or
II{-} = max{0,-}), @, is an independent realization of X, and {a,} is a sequence of constants

0 9

satisfying > " ja, =oc and ) . a2 < oco. A common choice of {a,} is a, =a/n, for some a > 0.

n=0"n

It can be shown that h,, converges to h at a rate of O(n=1/2).

EC.3. Proof of Theorem 1

The proof of Theorem 1 critically relies on the extended Stein’s lemma (Lemma 1). It also needs

the following lemma, often known as Slepian’s Inequality (Slepian |1962).

LEMmA EC.2 (Slepian’s Inequality). Suppose that (Z1,...,2Z;)7 has a multivariate normal
distribution. If Cov(Z;,Z;) >0 for all 1 <i,j <k, then, for any constants ¢;, i=1,...,k,

k k
P (ﬂ{&ZQ}) > || P(Zi > ci).
=1 =1

Proof of Theorem 1. Notice that N; is an integer-valued function only of S?, which is the OLS

K2

estimator of o2. Under Assumption 1, by Lemma 1 and Remark 7,

X3

2
(X,57) ~ /\/'<XT[32-,7\;_XT(XTX)‘1X), i=1,...,k. (EC.1)

Moreover, let & = (ngm —d)S?/o? for all i =1,... k. Then, & has the chi-square distribution with
(ngm — d) degrees of freedom, for i =1,...,k (see Remark 7).

For notational simplicity, we let V(X)) := XT(XTX) !X and temporarily write i* =i*(X) to
suppress the dependence on X. Let Q(x) .= {i: X78;» — X783, > 0| X = x} be the set of alternatives
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outside the 1Z given X = x. For each i € Q(X), XTB\Z»* is independent of XT,@ given X. It then
follows from (EC.1)) that

X8, — X',

(X,5%,57) ~ N (X8 — X7B;, (07 /Ny + 07 /IN;)V (X)) . (EC.2)

Hence, letting Z denote a standard normal random variable, for each i € Q(X), we have

T3 wTAa 2 2\ _ _(XTﬁi*_XTIBi) 2 2
IP’(X 3. Xﬁz>0‘X,Si*,Si>—IP’<Z>\/(U?*/Ni*+03/Ni)V(X)'X,Si*,SZ->
>P(Z> - X, 52,52
V00262 /(h2S%) + 0762/ (h2SP)]V (X)
h
- , EC.3
(¢(nom—d)(£;1+€fl)V(X)> (B3

where the inequality follows the definitions of Q(X) and N;, and the last equality follows the
definition of &;.
Then, conditionally on X, by the definition (2), the CS event must occur if alternative i*

eliminates all alternatives in Q(X'). Thus,

PCS(X)>P | ) {XT,@*—XTB,;>O}'X
i€Q(X)
=E |P ﬂ {XT@.*—XTI@>O}’X,Sf*,{Sf:iEQ(X)} ‘X : (EC.4)
i€EQ(X)

where the equality is due to the tower law of conditional expectation. Notice that conditionally on
{(X,52 {S2:i e QX)}}, {XB — XT3, :i € Q(X)} is multivariate normal by (EC.2). Moreover,
for 4,7/ € Q(X) and i # i, due to the conditional independence between XTB\i and XTBi/,

Cov (XTBz* - XTBu XTBi* - XT,&"

X,82%,{82:i¢ Q(X)}) = Var (XTBﬁ

X,Sf*) >0,

Therefore, applying (EC.4) and Lemma we have

PCS(X)>E | [] IP(XT@*—XT,@Z->O‘X,S§*,S?) |X

L i€Q(X)

h
P X
Lien(x) <\/(n0m —d)(& + fi_l)V(X)> ‘

o [ oo 20
:/o [/0 q)<\/(nom—d)(th1+s1)V(X)>n(s)dsl n(t)dt, (EC.5)

>E
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where the second inequality follows from (EC.3|), and |Q(X)| denotes the cardinality of Q(X). Since
0<®(-) <1 and 7n(-) is a pdf, the integral inside the square brackets in (EC.5) is no greater than 1.

Moreover, since |Q(X)| <k — 1, hence,

o *° h
Pesx) > [ [/ ‘I’<¢<nom—d><t—1+s—1>v<x>>"(S)ds

Then, it follows immediately from the definition of i in (4) that PCSg =E[PCS(X)]>1—a. O

k—1

n(t)dt.

EC.4. Proof of Theorem 2
The proof of Theorem 2 critically relies on Lemma

Proof of Theorem 2. Under Assumption 2, for i=1,...,k,j=1,...,m, Y,; is independent of
S7;; moreover, let 0y; = 0(x;), then &; == (ng —1)57, /0, ~ x5, _,; see, e.g., Examples 5.6a and 5 in
Rencher and Schaalje| (2008)). Let S; :={S3,...,52,}, for i=1,...,k. Then, S; is independent of
Sorl Yi(x;) and of {Yi(x;) : £ > no+1}. Since Ny, ..., N, are integer-valued functions only of

S;, by Lemma [EC.]] for i =1,...,k,

X,

(X,S;) ~ ./\f(XT,Bi,XT(XTX)’lXTE,-X(XTX)*lX),

where 3; = Diag(o? /Ni,...,0%,/Nim)-
For notational simplicity, let a == (ay,...,a,,)T == X(XTX)"' X and write i* =7*(X) to suppress
the dependence on X. Then,

X3,

(X, 8i) ~ (X Bi, Zaj ol /N”> : (EC.6)

Let Q(x) ={i: X783 — X78; > §| X = x} be the set of alternatives outside the IZ given X = x.
For each 1 € Q(X), X T83;- is independent of X73; given X. It then follows from (EC.6) that

X'6. - X8,

(X,8+,8) ~ N (XT[-}Z,* —XTﬁ”Za? «;/Nixj +0; /N”)> . (EC.7)
j=1
Hence, letting Z denote a standard normal random variable, for each i € (X)), we have

(XTBz* - X"8:)
V@2 (0%, [Niej + 0%, /Ny
—d
VO had Sy a2 (0%, /2, + 03 /S2)

IP(XT@*—XT@->O‘X,SZ-*,S¢> —p|z> X, 8,8,

=P\ 2> X, 8,8

= foer : (EC.8)
Vo= DY a3 (16, +1/8)
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where the inequality follows the definition of (X)) and N;;, and the last equality from that of &;;.

¥R
Then, conditionally on X, by the definition (2), the CS event must occur if alternative i*

eliminates all alternatives in Q(X). Thus,

PCS(X)>P [ N {XTBZ-*—XTBZ->O}’X
ieq(X)
~EP| N {XTBZ-*—XT@>O}‘X,Si*,{Si:ieQ(X)}

i€Q(X)

x|, (EC.9)

where the equality is due to the tower law of conditional expectation. Notice that conditionally on
{X,8+,{S;:i € QX)}}, {XTBZ-* — XT3 :i€ Q(X)} is multivariate normal by (EC.7)). Moreover,
for 4,7/ € Q(X) and i # ', due to the conditional independence between X T,E'}\i and X T,E'}\i/,

Cov (XTBi* - XT,@, XT,@@‘* - XTBi/

X,S, 1S ie Q(X)}) = Var (XTBZ-*

Therefore, applying (EC.9)) and Lemmam

X,Si*) > 0.

PCS(X)>E | [] P(XT,@i*—XTBi>O‘X,Si*,Si) |X

| icQ(X)

[ hHet ‘
>E o X, (EC.10)
_ielf;IX) \/(no =137 a5 (1/ & +1/&5)

where the second inequality follows from (EC.S)).
Notice that &;;’s are i.i.d. X1210—1 random variables. Let .ffl) =min{&;,...,&m} be their smallest

order statistic. Then for each i € Q(X),

>oa2 (/s +1/6) <Y a2 (1768 +1/67) = (1/¢ +1/) aTa. (EC.11)
j=1 j=1

It then follows from (EC.10|) and (EC.11]) that

hHet
PCS(X)>E d X
(X)=E | 11 B M (1) ‘
ieQ(X) (no 1)(1/51‘* + 1/51 )aTa

> i [2(X)]

Since 0 < ®(-) <1 and ~(1)(+) is a pdf, the integral inside the square brackets in (EC.12)) is no greater
than 1. Moreover, since |Q(X)| <k — 1, hence,

<[ e o
PCS(X) 2 /O [/O P <\/(n0 = 1)(7571 _|_31)aTa> ’y(l)(s)ds] ’)/(1) (t)dt

- /0 [/0 ! (\/(no -1t +h8Hjtl)XT(XT)()—1X> 7(1)(3)‘13] Yoy (t)de,
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where the equality holds because
a’a=(X(XTX)'X)X(XTX) ' X =XT(ATX) ' X.

It follows immediately from the definition of hye in (5) that PCSy =E[PCS(X)]>1—-«a. O
REMARK EC.2. We have introduced the smallest order statistics in (EC.11]) for computational
feasibility. Without it, Procedure TS™ would still be valid provided that we can compute the

constant hye from the following equation,

U
Rm

+

[/Rm Q(X,hHet)Hv(sj)dsl : --dsm] Hw(tj)dtl codty, p=1—a,

+ Jj=1

where

e
9(X, hyrer) =@ T
Vo= D)X a2t +57)

However, it is prohibitively challenging to solve the above two equations numerically for m > 3.

By introducing the smallest order statistic, we can instead solve (5) for hget, which is much easier
computationally, while the price is hye, will be a little larger then necessary as the lower bound of the
PCSg is further loosened. Also, in analogy to the discussion in when X is high-dimensional,

hue in (5) can also be solved via Monte Carlo method or stochastic approximation method.

EC.5. Proof of Theorem 3

Proof of Theorem 3. First notice that, conditionally on S?, N; — oo as § — 0. Recall that
Bi = N%(XTX)*XT SV Y, and Yi, = (Yig(1), ..., Yig(®,))T, i =1,..., k. Under Assumption 3,
Yio(x) is independent of Yiu(x') for any (i,f,x) # (i/,¢,’); moreover, Yy (x) and Yin(x) are
identically distributed for £ =¢'. Recall that N; = max{[h?5?/6?],n¢}, and for small enough 4,
N; = [h?S2/6%]. We first establish the following convergence result by the central limit theorem, for

eachi=1,...,k.
VN (1 &
o EZYM(OU) —x'B;
=1

S?= 7, (EC.13)

%
%

as § — 0, where “=" denotes convergence in distribution, and Z is a standard normal random

variable. To see (EC.13)), we split the left-hand side of (EC.13) as follows.
VN (1 &
o, ﬁz ; Yi(x) —x"8;

Ni Un 1 0 Ni—no 1 al
= ~ | =) Yulz)—2'8i | + Yie(x) — 2B,
AN e 2o Yelw) — a8 W, Ni_n%_%;l o(@) -2’8

0 =1
N;—ngvN; —ng Ni
>+\/\/ﬁin : o; : (Ni > Yie(w)—:cTﬂi) (EC.14)

n
0 Z:n0+1

Un) 1 "0
— > Yu(x)—2x'B;
oV N; (710; l( ) P
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g o; no (=1

\/Nifn()

almost surely, — 1, and
\/N; ’

Conditionally on S?, as § — 0, N; — oo, which implies that % <L " Vi(x) _wTIBZ) =0

ag;

N Ny
S (Ni - > mw—f@)%

l=ng+1

given by the central limit theorem. These three convergence results together with (KC.14]) establish
(EC.13)).

It is then easy to see

S?=Z,

v (;, > Yi(a) —X,Bi)

as 0 — 0, where Z ~ N (0,7) is a standard m-variate normal random vector. Hence,

‘\ﬁ]g{) (XT@ —XT@-) ‘{X,Sf} = 0.7, (EC.15)
as 0 — 0, where V(X) = XT(X7X) ' X.

To simplify notation, we write i* =i*(X) to temporarily suppress the dependence on X. Let
Qx) ={i: X768 — X708; > 6| X =x} be the set of alternatives outside the IZ given X = x. Let

Uy = ﬁ% <XTB,;* — XT,Bi*>. Then, Up|{X,S2} = 01 Z, as 6 — 0, by (EC.15). For i € Q(X),

let

z 3, T _ VN VN 3 T
i':VZ\(;Q(X Bi—X ﬂi)— \/Z]\%\/%(X Bi—X 5)

Then, U;|{X, 52,52} = %%0,Z, as § — 0, due to (EC.15) and that /Ny //N; = S;+/S; as § — 0.

i
Sy

For notational simplicity, we temporarily let s denote the cardinality of (X)), and refer to the
s alternatives in Q(X) as alternatives 1,...,s, without loss of generality. As U;«,U,,...,U, are
independent of each other given {X,S2,57,...,57}, as 6 =0,

Six Six T
(UZ-*,Ul,...,US)T‘{X,SE*,Sf,...,Sg} = <Ui*ZO’SO-121"“7SO-SZS) 5
1 s

where Zy, 71,...,Z, are independent standard normal random variables. Hence, by the continuous

mapping theorem, as § — 0,

S+ S T
(Ui* —Ul,...,Ui* —US)T|{X,S?*7812,...,SSQ}:> (O’i*ZQ— S 0'121,...,0'1‘*20— ?USZS y
1 s
(EC.16)
where the limit is multivariate normal, and for i,j € {1,...,s} and i # j,
S S 2 @2 2 2
Cov O-i*ZO_FO-iZia GZ*ZO_?UJZJ X,Si*,sl,...,ss = 0 > 0. (ECI?)
i j
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Now we have

li%niélfPCS(X)
>liminfP [ () {XT,Bi*—XT,Bi>O}’X (EC.18)
i€EQ(X)
=liminfE | P N {XTBi*—XTﬁi>0}‘X,Sf*,{Sf:z‘eQ(X)} ‘X (EC.19)
I i€EQ(X)
> E |liminf P Q){XTB,»*—XT,Bi>O}‘X,Sf*,{Sf:z‘GQ(X)} |X (EC.20)
1€eQ(X

] —(
=E |liminfP | () {Ui*—Ui>

i€Q(X)

X6+ —XT703;)
V(X)/Ni-

} ‘X,Sf*, {S7:ieQ(X)} ‘X (EC.21)

e _ 3.« — XT3,
=E|P ﬂ {Ui*ZO—SZUZ-ZZ-> (X78; Xﬂz)}‘X,Sf*,{Sf:ieﬁ(X)} ‘X (EC.22)

ieQ(X) S V(X)/N;«
. _ T3.. — X703,
>E H P <oi*zo&oizi > (X8 — X15:) stf*,si?) ‘X (EC.23)
() 5 i)
>E P <0i*+ = 0) Z> X,S2,57 || X (EC.24)
ie(X) St VV(X)8%/(r2S3)
—E HP<Z> : 2_h2 : )'X
i€Q(X) \/[Ui*/si* +07/S7V(X)

i h
=K (0] X\,
_ielg_([)() <\/(n0m—d)(§;l +€;1)V(X)> ‘

where ((EC.18|) holds because the CS event must occur if alternative * eliminates all alternatives
in Q(X), (EC.19) is due to the tower law of conditional expectation, (EC.20|) is due to Fatou’s

Lemma, (EC.21)) is by the definitions of U;« and U;, (EC.22)) is by (EC.16)), (EC.23|) is obtained by
Lemma together with (EC.17)), and (EC.24]) follows from the definitions of Q(X) and N;-.

The rest of the proof follows the same argument as that in the proof of Theorem 1. [

EC.6. Choosing PCS,,;, as Target

EC.6.1. Two-Stage Procedures
If we use PCS i, = mingco PCS(x) to measure correct selection across the population, and set the
pre-specified target as PCS,;, > 1 — «, instead of PCSg > 1 — a, we are in a more conservative

case wherein we require the selection policy produced by the selection procedure to make correct
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selection with probability at least 1 — « for all values of the covariates. In this case, both Procedure
TS and Procedure TS™ can be revised slightly to retain statistical validity under the new criterion.
In particular, we only need change the definition of the constant h (resp., hyet) in Procedure TS
(resp., Procedure TS™), while keeping the other parts of the procedure the same. The following
results are parallel to those for PCSg, that is, Theorems 1-4. The proofs are essentially the same

and thus we omit the details.

THEOREM EC.1. Suppose that Procedure TS is used to solve the R€S-C problem with the constant

h in the procedure being solved from

I;leig /000 /OOOCD <\/(n0m—d)(t1 —i}—lsl)mT(XTX)lm> n(s)ds] n(t)dt p =1—a. (EC.25)

e [If Assumption 1 is satisfied, then PCSyi, > 1 —«.

o If Assumption 8 is satisfied, then liminfs_oPCS, > 1—«.

THEOREM EC.2. Suppose that Procedure TST is used to solve the RES-C problem with the

constant hye, in the procedure being solved from

glei({)l /o [/0 ® <\/(n0 — 1)t ﬁHsetl)mT(XTX)lm> 7(1)(s)ds] Tw()df e =1-a
(EC.26)

o [f Assumption 2 is satisfied, then PCS,i, > 1 —a.
o If Assumption 4 is satisfied, then liminfs_,o PCSi, > 1 — a.

REMARK EC.3. It is computationally easier to solve for h from than from (4). First,
there is no need to compute the expectation with respect to the distribution of x in ,
which amounts to multidimensional numerical integration. Second, note that the minimizer of the
left-hand side of is the same as the maximizer of zT(XTX) 'x, since the function ®(-) is
increasing. Since XTX is nonsingular, it is easy to see that T(XTX) ' is convex in «. Thus, if ©
is a bounded closed set, the maximizer must lie in the set of all extreme points of the convex hull of
O; see, for example, Theorem 32.2 and Corollary 32.3.3 in |Rockafellar | (1970). A similar argument
can be made for the computation of hg. by comparing with (5).

EC.6.2. Numerical Results
Define the achieved PCS,,;, as



ecl0 e-companion to Shen, Hong, and Zhang: Ranking and Selection with Covariates for Personalized Decision Making

Table reports P/C\SE and P/C\Smin when the target is PCS,,i, > 95%, while Table reports
the case when the target is PCSg > 95%.

First, results in Table show that Procedure TS and Procedure TSt with h and hpe
computed from (EC.25|) and (EC.26)), respectively, can deliver the target PCS,,;, in their respective
domains. In particular, Procedure TS using h in can deliver the target PCS,;, if the
simulation errors are homoscedastic, while Procedure TS™ using h in can do the same

even when the simulation errors are heteroscedastic. Moreover, the achieved PCS,;, is higher than

Table EC.1  Results When the Target is PCSpin > 95%.

Procedure TS (using h in (EC.25)) Procedure TS™ (using h in (EC.26))

Problem h Sample P/C\SE P/C\Smin Rt Sample P/C\SE P/C\Smin
(0) Benchmark 5927 140,543 0.9989  0.9609 6.990 195337  0.9997 0.9840
1) k=2 4362 30,447 0.9958 0.9481 5132 42,164  0.9987  0.9709
(2) k=8 6.481 268,749  0.9993 0.9657 7.651 374,716 0.9999  0.9852
(3) Non-GSC 5927 140,542 1.0000 0.9958 6.990 195,337  1.0000 0.9980
@) 1V 5927 158,139 0.9989  0.9590 6.990 219,871 0.9998 0.9869
(5) DV 5927 158,100  0.9990 0.9628 6.990 219,741  0.9998  0.9837
(6) Het 5927 175,698  0.9952 6.990 244,488  0.9999  0.9904
(7) d=2 7155 51,161  0.9954 0.9600 7.648 58,493 0.9971 0.9708
(8) d=6 3.792 230,221 0.9994  0.9667 4804 369,307 1.0000 0.9944
(9) Normal Dist 5927 140,550  0.9990 0.9623 6.990 195404 0.9997 0.9851
(10) k=100 7.385 3,272,127 0.9999 0.9754 8.678 4,518,029 1.0000 0.9941
(11) d=50 9.444 4,370,569 1.0000 0.9998 12.631 7,818,201 1.0000 1.0000
(12) k=100, d=50  13.875 1.89x10° 1.0000 1.0000 18.970 3.53 x 105 1.0000  1.0000

Note. In the presence of heteroscedasticity, the boxed number suggests that Procedure TS fails to deliver the target PCSpin,
whereas the bold number suggests that Procedure TS™ succeeds to do so.

Table EC.2  Results When the Target is PCSg > 95%.

Procedure TS (using h in (4)) Procedure TS™ (using A in (5))
Problem h Sample P/C\SE P/C\Smin hHet Sample P/C\SE P/C\Smirl
(0) Benchmark 3.423 46,865 0.9610 0.7476 4.034 65,138  0.9801 0.8120
(1) k=2 2.363 8,947 0.9501  0.8094 2.781 12,380  0.9702 0.8541
(2) k=8 3.822 93,542 0.9650  0.7290 4.510 130,200 0.9842 0.8098
(3) Non-GSC 3.423 46,865 0.9987  0.9400 4.034 65,138  0.9994 0.9599
(4) IV 3.423 52,698 0.9618 0.7589 4.034 73,265 0.9807 0.8184
(5) DV 3.423 52,720 0.9614 0.7544 4.034 73,246  0.9806 0.8143
(6) Het 3.423 58,626 0.6368 4.034 81,555 0.9846 0.8625
(7) d=2 4.612 21,288 0.9593 0.7941 4.924 24,266  0.9662 0.8223
(8) d=6 2.141 73,428 0.9656  0.7662 2.710 117,626  0.9895 0.8589
(9) Normal Dist 3.447 47,529 0.9626  0.7579 4.063 66,061  0.9821 0.8230
(10) £=100 4.346 1,133,384 0.9758 0.5952 5.117 1,570,911 0.9918 0.7218
(11) d=50 3.222 508,977 0.9583  0.7522 4.312 911,326 0.9926 0.8749

(12) k=100, d=50 4.886 23,400,677 0.9765 0.6189 6.702 44,024,486 0.9991 0.8854

Note. In the presence of heteroscedasticity, the boxed number suggests that Procedure TS fails to deliver the target PCSg,
whereas the bold number suggests that Procedure TS™ succeeds to do so.
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the target in general; see, e.g., the column “P/C\Smin” under “Procedure TS” of Table except
the entry for Problem (6). This kind of conservativeness is also observed in Table where
Procedure TS using h in (4) and Procedure TS™ using & in (5) are used when the objective is to
meet the target PCSg.

Second, the numerical results show that PCS,;, is a much more conservative criterion than
PCSg. In particular, if the target is PCSg > 1 — «, then P/C\Smin is significantly lower than 1 — a,
except for Problem (3), in which the non-GSC amplifies the procedures’ conservativeness stemming
from the IZ formulation and provides the “extra” sample size needed for making P/C\Smin reach the
target; see Table . By contrast, if the target is PCS,,;, > 1 — «, then PTC\SE is virtually 1 for
each problem-procedure combination; see Table Another indication of the conservativeness of
PCS,.i, is that in each problem-procedure combination, the sample size when using PCS,,;;, as the
criterion is about three times larger than that when using PCSg. For example, in Table the

sample size for Problem (0) with Procedure TS is 46,865, whereas the corresponding sample size

in Table is 140,543.

EC.7. Asymptotic Sample Size Analysis
For ease of presentation, we relax the integrality constraint of the sample size, but it has no essential

impact on the asymptotic analysis of the sample size.

EC.7.1. Procedure TS

The expected total sample size of Procedure TS is
k k

Npg=E [ZmN} =mh®Y E[max {S}/6%,no/h’}], (EC.27)
=1 i=1

where h is solved from (4) if PCSg is used as the criterion, whereas from (EC.25|) if PCS,,;, is used.

We will provide an asymptotic upper bound on Ntg in two asymptotic regimes, i.e., as k — oo and
as a — 0. Note that the expression of Ntg involves both h? and 1/h?, which depend on k and «.
We first establish in Lemma both a lower bound and a upper bound on h. Its proof is deferred

to
LEMMA EC.3. Let h be the constant solved from either (4) or (EC.25|), and let a € (0,1/2) be a

constant. Then,

2(k — 1)\ 5= i
0<h§h<{2(nom—d)[<a)nom_ —1} xmame(XTX)_lm} )

- EISC)

for all k >2 and o < o, where h is a solution of (4) for k=2 and a = a.
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Then, it follows immediately from (EC.27) and Lemma that for any k& and small «,

FISIC]

Nrg <2m(nem —d) [(2%0‘_1)> = - 1] X maxx" (XTX) 'z x iE[max{Sf/éQ,no/th

scTsxk(Z)”"g”‘d,

where Crg is a constant independent of k£ and «, given by

2 _ 2
Crs =2m(ngm — d) x 2mom=4 x r;lgé(asT(XTX) 'z x gﬁg}iE[max{Sf/éz,no/ﬁ H-

Hence, we conclude that Npg = O(kH”O’%—d) as k— 00, and Ntg=O(a "O’i—d) as a— 0.

EC.7.2. Procedure TSt

The expected total sample size of Procedure TS* is

Npg+ =E {ZZNM] = hi Y E[max {S}/6% no/ b } ], (EC.28)

i=1 j=1 i=1 j=1
where Ay is solved from (5) if PCSg is used as the criterion, whereas from (EC.26)) if PCS,,;, is
used. Similar to the analysis in §EC.7.1] we first give bounds on A in Lemma [EC.4] The proof is

presented in §EC.7.4]
LEMMA EC.4. Let hye, be the constant solved either from (5) or (EC.26|), and let a € (0,1/2)

be a constant. Then,

2m(k — 1)\ w1 12
0 < figteq < Pater < {2(n0 ~1) [(7) Tt 1} x maxa:T(XTX)_lsc} ,

[0 xrcO

for all k> 2 and o < a, where hye, is a solution of (5) when k=2 and a =«

Then, it follows from (EC.27)) and Lemma that for any k£ and small «,

5 k. m
M)W — 1} x max T (XTX) ta x ZZE[maX{SEj/527nO/%2}]7

xcO

Nos+ < 2(no — 1) [( -

i=1 j=1
kN mosT
< Crse x k(=)™
«
where Crg+ is a constant independent of k and «, given by
Crg+ =2 1) x (2m) 701 T(xtx)t mIE S2./6% 0/ Pies”
st =2(ng — 1) x (2m) ™0 xrileag)(ac ( ) mxlrgg‘ 1 [max{ 53/ 67,10/ Piey }]
=

Hence, we conclude that Npg+ = O(kH%) as k — oo, and Ntg = O(Of%) as a— 0.

REMARK EC.4. It is straightforward to see that with the same design matrix X and ini-

1+

2 2
tial sample size ng, Nypg+ = O(k" "0-Ta m0-T1) has a higher order of magnitude than Ntg =

2 _ 2 .
O(k1+"0m—da nom=d) as k — 0o or a — 0, since ngm —d >mny — 1 for all m>d > 1.
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REMARK EC.5. For Procedure TS™, m is not involved in the order of magnitude of Npg+ as
k — oo or a — 0, but only takes effect in the leading constant C'r¢+. By contrast, a larger value
of m leads to a lower order of magnitude of Nrg for Procedure TS. An intuitive explanation for
the above difference is that, increasing m will result in a more accurate estimation of the common
variance o7 in Procedure TS, while it does not affect estimation of the variances in Procedure T'S™
since they are estimated separately. This suggests that Procedure TS™ for the linear models will

favor the minimal m, that is, m =d.

EC.7.3. Proof of Lemma [EC.3]
We first prove the lower bound. Let

e[ ) . k-1
fl@,h) '_/o [/0 ® <\/(n0m—d)(t1+51):cT(XTX)1m> n(s)d ] n(t)d.

Then, h solved from (4) satisfies E[f(X,h)] =1 — a, whereas h solved from (EC.25)) satisfies
mingee f(x,h) =1 — . Note that both E[f(X,h)] and mingece f(,h) are increasing functions in

h, so a smaller a will yield a larger h. It is also clear that a larger k will yield a larger h. Hence,
h defined in Lemma is smaller than h solved from (4) for all k> 2 and a < a. Note that h
solved from (4) is smaller than h solved from with everything else the same. The lower
bound is then established.

The proof for the upper bound is similar to the proof of Lemma 4 in Zhong and Hong| (2020)).
Specifically, let

2(k — 1)

) 1/2
)rom=d — 1] X mawa(XTX)_lac} .

h* = {2(’[7,07774 — d) [( oy
To show that h, which is solved from either (4) or (EC.25)), is no larger than h*, it suffices to show
that E[f(X,h*)] > 1 — a and mingce f(x,h*) > 1 — «, which is clearly true if we can show that
f(x,h*) >1—a for any x € O.

Let Zy,...,Z;_1 be (k—1) independent standard normal random variables. Let &;,...,&;, be k

independent chi-square random variables with (nom — d) degrees of freedom. Moreover, assume that

Z; is independent of &, for 1 <i<k—1, 1 <4 <k. Then, for any « € O,

k—1 B
z,h*)=E |P 7, <
Jlaw ) [ (O{ ¢(nom—d)(§;1+£{1>wT<XTX)-1w}

k—1 B
>E|1-Y Pz
B [ Z:‘ ( >%(mm—d)(&:l+£:1)a:T<XTX)—1w

‘)

h*
S - EC.29
( 8 ( g V(nom —d) (& +§11)$T(XTX)1:B) ( )
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By the Chernoff bound, P(Z; > a) < exp{ - %} for all a > 0. Hence,

h*
Pl Z >
( V(ngm —d)(&, + & >aﬂ<wc>1w)

| /\

[ { 2(nom — CD@k(izl)wWR“XY*w}]
ool -]
&' +§21
E[e { s 1));0md_15<1)}i, (EC.30)

where &1y == min{¢, & } is the smallest order statistic of two independent chi-square random

IN

variables with (nom — d) degrees of freedom. Here, the second inequality holds by the definition of
h*. Let fnym—da(-) and F, m,—q(-) denote the pdf and cdf of the chi-square random variables with
(ngm —d) degrees of freedom, respectively. Then the pdf of (1) is known as 2, n—a(t)(1 — Frgm—a(t)).
Hence, following , we have

V(nom —d)(& 1+ & DT (ATX) 1w
o 20h—1)\ Fgm=d _
S/O exp{ - ( < )2 1t} X2fnom—d(t)(1_Fnom—d(t))dt

o (le))% 1
< 2/ expq — @ 5 t ¢ frgm—a(t)dt
0

2(k=1) \agm=a _ q
=2E exp{ ( = )2 fl}]
2k —1). 2 (ngm—d)/2
= 2[1+(7( - ) i=a 1]
—a/(k—1), (EC.31)

where the second equality is due to the moment generating function of the chi-square random

variables with (ngm — d) degrees of freedom. Combining (EC.29) and (EC.31)), we can conclude
that f(x,h*) >1— « for any x € O, which completes the proof. [

EC.7.4. Proof of Lemma [EC.4

The lower bound can be proved using the same argument for proving the lower bound in Lemma

EC. 3l Let

Rfiey = {2(n0 -1) [(w) T 1} X max:nT(XTX)la:}l/2,

(6% rcO
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and let

s it e
f(@, hger) -—/0 [/0 (I)<\/(n0—1)(t—1—i—s—l)a:T(XTX)—lcc) T ( )d] Vo) (£)dt.

It then suffices to show that f(x,hfj,) > 1— a for any € O, in order to prove the upper bound.

Let Zy,...,Z;_1 be (k—1) independent standard normal random variables. Let ;,...,& be k
independent random variables, each of which is the smallest order statistic of m chi-square random
variables with (ny — 1) degrees of freedom. Moreover, assume that Z; is independent of &, for

1<i<k—1,1<i <k. With the same argument leading to (EC.29)), we have

h*
T, hi) >1—(k—1)xP| 2, Het : EC.32
it ) b ( ] V(g —1) (& +§f1)wT(XTX)—1w) ( )

With the same argument leading to (EC.30)), we have

hiy (&ngy%ﬁ_l
]P) et <E o @
<Zl Ve +£11>:m<xw>1m> - [exp{ 2 f“’}]’

where £y := min{, &, } is the smallest order statistic of 2m independent chi-square random variables
with (no — 1) degrees of freedom, and its pdf is 2m f,,,—1(t)(1 — Fy,,—1(¢))*"'. Then, with the same
argument leading to (EC.31)), we have

2

hire o (2nt=ny T g
' - B < ng—1 d
IP’(Z > \/(no—1)(§k_1+§1_1)wT(XTX)—1a:> <2m/0 exp{ 5 t ¢ frg_1(t)dt

2m(k—1)\ 7T
_ZmE[exp{—( = ; 150}]

=a/(k—1), (EC.33)

where & is a chi-square random variables with (no — 1) degrees of freedom. Combining (EC.32|) and
(EC.33)), we can conclude that f(x,hjy,) > 1— « for any & € ©, which completes the proof. [

EC.8. Proof of Theorem 5
Theorem 5 can be viewed as a corollary of the following Theorem [EC.3] Therefore we only provide

the proof of Theorem and remark that Theorem 5 holds immediately.

THEOREM EC.3. Let N;; denote the number of samples of alternative i taken at design point
x;, and ﬁj denote their means, for i=1,....k, j=1,...,m. Let Y, = (}/}ﬂ,...,fﬁ- )T and ,@l =
(XTX)*lXTlA’; fori=1,... k. Under Assumption 1 or 2, the GSC defined in (7) is the LFC for
a selection procedure of the RES-C problem with the I1Z formulation and a fized design, if all the
following properties hold:
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(i) The selected alternative is i* () = arg max {:UT,@}
1<i<k
(it) Conditionally on {N;;:1<i<k,1<j<m}, Yy ~N (x]B;,07(x;)/Ny) for alli=1,... Fk,
j=1,....,m, and )A/ij is independent of }71-/]-/ if (4,5)# (', 7).
(111) N;j is independent of the configuration of the means, for alli=1,... .k, j=1,...,m.
Proof. Suppose that 8= (3,:1<1i<k) follows the GSC. Then, i*(x) =1 and by Property (i),

conditionally on X =,
PCS(x;8) =P (mTﬁl 2B, >0,¥i=2,..., k:)
:E[P<mT§1—mT§i>0, Vi=2 k‘ ”,1§igk,1§jgm}], (EC.34)
where the expectation is taken with respect to the N;;’s and we write PCS(z;3) to stress its
dependence on 3 since we will consider a different configuration of the means later.

By Property (ii), conditionally on X = and {N;;: 1 <i<k,1<j<m}, wTBi is independent of

x7B; for i #i'; moreover,

mTBi

{Ni,j 01 SZS k,l S] Sm} ~ N(iBTﬁi,&Z((Iﬁ,Ei)) y

where ¢%(z,%;) = xT(XTX) ' XTE,X(XTX) ‘e and %, := Diag(c?(x1)/Ni1, ..., 02 () /Nim). In
particular, 62(x,3;) does not depend on 3 by Property (iii). Hence, if we let ¢(-; u,0?) denote the
pdf of N (p,0?), it follows from (EC.34) that

o k
/+ ( wzﬂf)¢(t;mTﬂl,52(m,21))dt . (EC.35)

We now consider a different configuration of the means, 3" = (8] : 1 <i < k). We will show below
that PCS(z;8") > PCS(x;3) for all © € ©. For each i =1,...,k, we define sets 0" and O as

follows,

PCS(z;3) =

1) :{:BEGI:BT,BT—:BTﬁT > ¢ for all j #i},
o = {xcO:x76] - wTBT >0 for all j #i, and 73] — wT,B; < ¢ for some j #i}.
Clearly, {6".0% :i=1,...,k} are mutually exclusive and © = Ule (@El) U@Z@)). We next
conduct our analysis for each @El) and 652), respectively.

e Case 1: @§” # (). For any x € @(1) x'8l — :1:T,84T > ¢ for each i =2,...,k. By the same analysis
that leads to (EC.35), we can show that for any x € ©!",

PCS(z; 31)

_E [/M - ( — 26, >¢<t;mw},52(gg,zl))dtl
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o k 13T _ T _ 7l
:E[ + Hq)(t-i-(ﬁc ,31~ :Bﬁl) wﬂi)(b(t—i-(a?TﬁI—wTﬁl);wT,@I,éz(a:,El))dt]

00 ;9 o(x,%;)
R e Ry S A WY
- /°° g gz, %) o(t; "B, 07 (x, %)) .

Due to (7) and the fact that 73] — 278! > 6 for each i =2,...,k, (278, — 78] + 278]) <
x78;, for i =2,... k. Since ®(-) is an increasing function, it is straightforward to see that
PCS(z; 3") > PCS(z; 3) for any z € ©".

e Case 2: ©\” (. Fix an arbitrary @ € 0% let Q(x) = {i=2,....k: 2’8 —x78] > 6}. Then,
Q(x) C {2,...,k} by the definition of O, If Q(x) = (), then each alternative i, i = ok, is
in the IZ, and thus PCS(z, 81) = 1. Otherwise, (278, — 73! + x78!) <78, for each i € Q(m)

Hence,

PCS(x;3") > P (wTBT — :BTB-T >0, Vie Q(:I:))

_E /W 11 @( ))¢(t;mw1,52(m,zl))dt

1€Q(x)
o t—(x7B 81 T4 .
=E / H P (x7B8 (wwzﬁ)-i-w Bi) ¢(t;$T,31,0'2(:B,21))dt
1€Q(x)

SE /m I1 @(U wﬁl)at;wwl,&?(w,zn)dt

1€Q(x)

> PCS (a3 8).

where the last inequality holds because 0 < ®(-) <1 and |Q(z)| <k — 1.

e Other Cases. For each i =2,...,k, if @El) # (), then we can simply swap the indexes of
alternative 1 and alternative i, and follow the same analysis as in Case 1. Likewise, for each
1=2,...,k, if 952) # (), we can follow the analysis in Case 2.

Therefore, we conclude that PCS(z;3") > PCS(z;3) for any = € ©. So E[PCS(X;8")] >
E [PCS(X;3)]. Moreover, the foregoing analysis also shows that, the equality may hold only if
random vector X is degenerate to a constant vector. Thus, the GSC is the LFC. 0

REMARK EC.6. Obviously, both Procedure TS and TS™ possess those properties specified in
Theorem so Theorem 5 holds immediately as a corollary of Theorem

EC.9. Proof of Theorem 6

Proof of Theorem 6. It suffices to show that the extreme design yields the minimal value of the
solution h to (4) among all symmetric designs. We first notice that by (4), the design matrix X
takes effect on the total sample size of Procedure TS only through the form X7X. In the sequel,
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two design matrices X and X are said to be equivalent if XTX = XTX. For instance, swapping any
two rows of X' leads to an equivalent design matrix since it does not change X7X.

Let X, denote the design matrix corresponding to the extreme design S'=---=8*=38° and X;
denote a nonequivalent design matrix corresponding to a symmetric design. The key of the proof is
to show that

T (XTX,) e <x"(XX) ', xe®, (EC.36)

where the equality holds if and only if = (1, ZQJ’T”Q, e Z‘”%)T, which is the center of ©.
To see this, let h, and h; denote the solution h of (4) for X, and &}, respectively. Notice that
the double integral on the left-hand side of (4) is strictly increasing in h whereas strictly decreasing

in T(XTX) ‘. Hence, if (EC.36) holds, then h, < h;, where the equality holds if and only if the

lotuso ld+ud T
? 2 *

random vector X = (1 yeeey

Now we prove ((EC.30)). For ease of presentation, we first consider a design matrix that corresponds
to a general symmetric design. Since the first element of the covariates is always 1, the b(2%71) x d

design matrix X is

(ab)T 1 oaj, - aj,
(a;d,l) 1 aéd—l,z aéd—l,d
x=| : |= : Lo 2L,
(a)T L oaf, - af,
(agdﬂ)T 1 agd—172 agd—ld

where 1 denotes the b(2¢7!) x 1 vector of ones. We further set Z := (vs,...,v4). Then X = (1, Z),
and

(EC.37)

T T
XTX:<11 1Z>.

Z11 Z7Z
Notice that m = b(2?71) = 171. Then, for any x = (1,27)7, where z € R, standard matrix
calculation (Horn and Johnson| 2013} §0.8.5) yields that

' (XTX) 'w=(z— ZTlm_l)TA(Z)_1 (z=Z"tm™") +m™,

where A(Z):=Z27Z — Z71m '17Z is the Schur complement of the block 171 of XTX in (EC.37)

and it is nonsingular because XTX is nonsingular. The symmetry of design points implies that

vl 1m ™t =t for oy =2, d. So, by letting s:= (222 ..., W%)T, we have ZT1m ™! = s and

e (XX) 'e=(2-8)"AZ) ' (z—8)+m L. (EC.38)
Hence, if & = (1,252 .. W%)T, then z = s and thus zT(XTX) 'z =m'. Since both X, and X;
are symmetric designs, x7(XJX,) 'z =2T(ATX) 'z if x = (1, MT“?, e W%)T.
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It remains to prove the strict inequality in for z #s. Let X, = (1, 2,) and X; = (1, Z;).
Due to (EC.38), it suffices to show that A(Z;)~' — A(Z,)~! is positive definite. This is equivalent
to showing that A(Z,) — A(Z;) is positive definite (Horn and Johnson |2013, Corollary 7.7.4), i.e.,
for any nonzero z € R471,

ZTA(Z)z > 2TA(Z)z. (EC.39)

Let Z denote the b(2971) x b(2971) identity matrix. Then,

AZ)=Z"(ZT-1m 1) Z=Z"(Z-1m '1") (Z—1m "1") Z=(Z2-1s")" (£ —1s7),

1

since ZT1m ™! = s. Denote z :=(29,...,24)7 and s:=(S,...,54)7. Then

d

ZTAZ)z=[(Z-18T) 2] [(Z-18T) 2] =) ) 2% (Ve — 154) (v, — 15,).

w=2 q=2

Thanks to the symmetry of the design points, it is easy to verify that

0, if w# g,
(vw - ]—SU;)T(UQ - 15‘]) = { d—1 b N9 .
27 Z_j:l(pzu) , fw=gq,
where pJ = ‘a{,w — sw} =...= ‘agd_l w sw‘ is the common distance of a?, ... ,aéd_l to the center
of © along coordinate x,,, for w=2,...,d and j=1,...,b. Hence,

2ZTA(Z)z =271 22 (o)

w=2  j=1
Since pJ, € (O, %], obviously, {p’, = @hy =2,...,d,j =1,...,b} maximizes zTA(Z)z.
Because z is nonzero, i.e., at least one z,, is not zero, the solution is unique in terms of p/,. Notice
that this solution exactly means that S =..-=8%=8" i.e., the extreme design. Hence, (EC.39) is
proved and the proof of (EC.36) is completed. [

EC.10. Proof of Theorem 7

Before the proof, we first introduce formally the D-optimality and the G-optimality of experimental

designs in the linear regression setting. Consider the linear regression model
Y(z)=x"0+e,

where B,z € R? and ¢ is random error with mean 0 and variance o2. Assuming the design
region is ©, we choose m design points with «; € 0, i=1,...,m. Let Y = (Y (x,),...,Y (x,,))T,
X=(x1,...,2,)7, and T ={X :rank (XTX) =d,x; €O,i=1,...,m}. It is known that if ¥ € T,
the OLS estimator of 3 is 8 = (XTX)"'XTY. Moreover, Var(3) = 02(X7X)~! and Var(z'3) =

2T (XTX) 'x. The D-optimality and the G-optimality are related to the two variances, respectively.
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A design X, is said to be D-optimal if
X, =argmaxdet (XTX).
XeY
The D-optimal design aims to minimize the volume of confidence ellipsoid for 3 given a fixed
confidence level under the assumption that the errors are normally distributed.
A design X, is said to be G-optimal if
X, = ar)g(;gin {réleaé(a:T(XTX)_lw} .
The G-optimal design aims to minimize the maximum variance of the fitted response over the
design region.
Theorem 7 is an application of the general equivalence theory; see, e.g., |Silvey| (1980, Chapter 3)
for a careful discussion on this subject. Some concepts need to be introduced before the proof.
The first concept is the continuous design, also called approximate design. Suppose that we relax
the constraint that the number of samples at each design point must be an integer, that is, we
can allocate any portion of a given total sample size m to any point in ©. Formally speaking, the
allocation can be described by a probability distribution 1) on ©, which can be either continuous
or discrete. Let X be a random vector with distribution v, and define M(¢)) :=E,(XXT). For
example, if X' is an ezxact design which contains distinct points xi,...,x,, having my,...,m,
samples, respectively, where m; + --- 4+ m,, =m, then the distribution ¢ for sample allocation is
defined by P(X =x;) =m;/m, i=1,...,n, and thus M(¢)) = m ' XTX. However, a continuous
design may not be an exact design due to the integrality constraint.
By allowing continuous designs, the D-optimal design is extended to be a distribution
¥, = argmaxdet (M (v))),
Yew
where U denotes the set of all ¢ such that M (1)) is nonsingular. Notice that ¥ is also the set of all
¥ such that M (1)) is positive definite. Likewise, the G-optimal design can be extended as follows
), = argen\l}in {Igg@})(mT(M(@b))_lw} .
More generally, consider a function f of positive definite matrices. A continuous design 1, is said
to be f-optimal if
. = argmax f (M(1)).

Pew

For instance, the D-optimal design and the G-optimal design can be obtained by setting f(M) =

logdet (M) and f(M)=— max xT (M)~ 'z, respectively. It is easy to verify that both functions are
xTe

concave in M. The use of concavity will become clear in Lemma below.
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At last, we introduce two kinds of derivatives. The Gdteaur derivative of f at M in the direction
of My is defined as
.1
Gy M1, My) = hm+ z [f(Mi+eMsy) — f(My)].

We say f is differentiable at M, if G;(M1, Ms) is well defined. The Fréchet derivative of f at M,
in the direction of M, is defined as

Ff(M1,M2) = Elim 1 [f{(l — €)M1 +€M2} — f(Ml)] = Gf(Ml,MQ — Ml)

ot €

We state Theorem 3.7 of [Silvey! (1980) as Lemma and will apply it to prove Theorem 7.

LEmMmA EC.5. If f is a concave function of positive definite matrices and is differentiable at
M), then 1, if f-optimal if and only if Fy(M(3.),zx™) <0 for all x € ©.

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Consider the continuous design 1), that assigns probability 1/(2971) at
each corner point of ©. Since m = b(2971), 9 is indeed the exact extreme design defined in §7.1.
Hence, it suffices to prove that v, is both D-optimal and G-optimal in the continuous case.

We first prove the D-optimality of ¢y. Let Xy denote the design matrix corresponding to .
Then, X, is a 2¢7! x d matrix with each row corresponding one of the 2¢-! distinct corners of .

For example, if d = 3,

11y I
1 l2 us
1 U9 lg
1 Ug U3

It is easy to see that M(vy) = Qd%lXOT Xy. In the sequel, we verify the conditions of Lemma m

XOI

for f =logdet to prove the D-optimality.
The concavity of f is trivial; see, e.g., Theorem 7.6.6 of Horn and Johnson| (2013). For the

differentiability, notice that for any positive definite matrix M,
d
log det(M; +eMy) —logdet(M;) =logdet(Z +eM; ' My) = Z log(1+¢eAy,),
w=1

where Z is the d x d identity matrix and A,...,\; are the eigenvalues of MM, which are all

real (Horn and Johnson|2013, Corollary 7.6.2). Hence,

1 d
Gy(My, M) = lim - [logdet(M; +eMy) —logdet(My)] =Y | A, = tr(M Moy),

e—0t €

is well defined, so f is differentiable at M.

Moreover,

Ff(Ml,Mg) = Gf(Ml,MQ - Ml) = tI‘(M;lMg —I) = tr(M;lMg) —d.
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Hence, for any x € O,
Fr(M(bo),zx™) = tr(M (o) 'xa) —d = tr(z"M(hy) @) —d = 2T M(1)o) ' —d.

Since M (1))~ " is positive definite, Fy(M (1)), zaT) is convex in @, thereby achieving its maximum
only if  is one of the corners of ©, i.e., € 8°. Therefore, to verify F;(M (1)), zxT) <0, it suffices
to show that

M) le=d, xeS8° (EC.40)

We denote X; = (1,2,) £ (1,v,,...,v4), where 1 is the 277! x 1 vector of ones. Following the
standard matrix calculations similar to those in the proof of Theorem 6, we can have that, for any

x = (1,27)7, where z == (25,...,24)" € R,

T M (1) = 20 T (X X)L = 20 [(z ) {(Zo—18T)T(Zy—18T)} (2 —s)+ 1/ (2d*1)} ,
(EC.41)
where s = (so,...,50)" == (2522, lﬁ#)T. Notice that (2, —1sT)" (2, —1sT)isa (d—1) x (d—1)

matrix whose (w —1,¢ — 1)-th element is (v,, —1s,,)7(v, — 1s,), for w,q=2,...,d, and that

0, if w#q,

2d-1 (@)2, if w=gq.

(Vw — 13w)T(vq - 1361) = {

Hence,
Uy — 1 2 Ud—ld 2
(2o —18")" (2, —18") = 2 'Diag < 22 2) ,...,< 5 ) :
and thus ) )
((Zo—18T) (20— 157} ' = —- Dia 2 2
0 0 “omn e\ ) )
Moreover, for any @ € 8, z € {ly,us} x -+ X {lg,uq}. Hence, (2, — 5,)* = ("w;lw)Q, forw=2,....d.
Then,
1 2\’ d—1
1 —
(z=8)"{(Z2y—18")" (2, — 18"} (z—38)= = Z <u — ) (2w — 8w)> = TR (EC.42)
w=2 w w

Then, (EC.40|) follows immediately from (EC.41]) and (EC.42|), proving the D-optimality by Lemma
ECA
The G-optimality of 1, can be proved similarly, by taking f(M(¢)) = —max xT(M(¢y)) . Or,
EAS

we can conclude this immediately by applying the known equivalence between the D-optimality
and the G-optimality for continuous designs established in Kiefer and Wolfowitz (1960)); see also
Silvey| (1980, §3.11). O
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