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E-Companion to “Ranking and Selection with Covariates for
Personalized Decision Making” by Shen, Hong and Zhang

EC.1. Proof of Lemma 1

The following Lemma EC.1 is a more general version of Lemma 1 in §3. Therefore we only provide

the proof of Lemma EC.1 and remark that Lemma 1 is a special case. Also note that Lemma EC.1

is used directly in the proof of Theorem 2.

Lemma EC.1. For each j = 1, . . . ,m, let Y (xj) = xᵀjβ + ε(xj), where β,xj ∈ Rd and ε(xj) ∼
N (0, σ2

j ). Suppose that ε(x1), . . . , ε(xm) are independent. Let Y1(xj), Y2(xj), . . . be independent

samples of Y (xj). Let T be a set of random variables independent of
∑n

`=1 Y`(xj) and of {Y`(xj) : `≥
n+ 1}, for all j = 1, . . . ,m. Suppose Nj ≥ n is an integer-valued function of T and no other random

variables. Let Ŷj =N−1
j

∑Nj

`=1 Y`(xj), Ŷ = (Ŷ1, . . . , Ŷm)ᵀ, X = (x1, . . . ,xm)ᵀ, β̂= (X ᵀX )−1X ᵀŶ , and

Σ = Diag(σ2
1/N1, . . . , σ

2
m/Nm). Then, for any x∈Rd,

(i) xᵀβ̂
∣∣T ∼ N (xᵀβ,xᵀ(X ᵀX )−1X ᵀΣX (X ᵀX )−1x);

(ii)
xᵀβ̂−xᵀβ√

xᵀ(X ᵀX )−1X ᵀΣX (X ᵀX )−1x
is independent of T and has the standard normal distribution.

Proof. For part (i), by the definition of β̂, it suffices to show that Ŷ
∣∣T ∼N (Xβ,Σ). We first

notice that Y (xj)∼N (xᵀjβ, σ
2
j ). Since T is independent of

∑n

`=1 Y`(xj),

n∑
`=1

Y`(xj)
∣∣∣T ∼ N (nxᵀjβ, nσ

2
j ).

On the other hand, since T is independent of {Y`(xj) : `≥ n+ 1} and Nj is a function only of T ,

Nj∑
`=n+1

Y`(xj)
∣∣∣T ∼ N ((Nj −n)xᵀjβ, (Nj −n)σ2

j ).

Since
∑n

`=1 Y`(xj) and
∑Nj

`=n+1 Y`(xj) are independent,

Ŷj

∣∣∣T =
1

Nj

 n∑
`=1

Y`(xj) +

Nj∑
`=n+1

Y`(xj)

∣∣∣T ∼ N (xᵀjβ, σ2
j/Nj

)
.

Notice that Ŷ1, . . . , Ŷm are independent conditionally on T , so Ŷ
∣∣T ∼N(Xβ,Σ).

For part (ii), let

V =
xᵀβ̂−xᵀβ√

xᵀ(X ᵀX )−1X ᵀΣX (X ᵀX )−1x
,

then V |T ∼N (0,1) by part (i). Notice that P(V < v|T ) = Φ(v) is not a function of T for any v, so

V is independent of T . �

Remark EC.1. It is easy to see that Lemma 1 in §3 is a special case of Lemma EC.1 with

σ1 = · · ·= σm = σ and N1 = · · ·=Nm =N .
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EC.2. Computing h in High Dimensions

If X is high-dimensional, the numerical integration in (4) for computing h suffers from the curse of

dimensionality. For instance, the error in the trapezoidal rule for d-dimensional numerical integration

is O(n−2/d) in general. One solution is the Monte Carlo method. Let

f(x, h) :=

∫ ∞
0

[∫ ∞
0

Φ

(
h√

(n0m− d)(t−1 + s−1)xᵀ(X ᵀX )−1x

)
η(s)ds

]k−1

η(t)dt,

and generate n i.i.d. samples of X, x1, . . . ,xn. Then, E[f(X, h)], the left-hand side of (4), can

be approximated by n−1
∑n

i=1 f(xi, h) with error O(n−1/2). So the Monte Carlo method is more

efficient when d > 4. We can then solve n−1
∑n

i=1 f(xi, h) = 1− α for h by using the MATLAB

built-in root finding function fzero.

Another approach to computing h in high dimensions is the stochastic approximation method (Rob-

bins and Monro 1951). Given an initial value h0 ≥ 0, define hn+1 = Π{hn− an(f(xn, hn)− (1−α))},

where Π{·} denotes a projection that maps a point outside [0,∞) to [0,∞) (e.g., Π{·}= ‖ · ‖ or

Π{·} = max{0, ·}), xn is an independent realization of X, and {an} is a sequence of constants

satisfying
∑∞

n=0 an =∞ and
∑∞

n=0 a
2
n <∞. A common choice of {an} is an = a/n, for some a > 0.

It can be shown that hn converges to h at a rate of O(n−1/2).

EC.3. Proof of Theorem 1

The proof of Theorem 1 critically relies on the extended Stein’s lemma (Lemma 1). It also needs

the following lemma, often known as Slepian’s Inequality (Slepian 1962).

Lemma EC.2 (Slepian’s Inequality). Suppose that (Z1, . . . ,Zk)
ᵀ has a multivariate normal

distribution. If Cov(Zi,Zj)≥ 0 for all 1≤ i, j ≤ k, then, for any constants ci, i= 1, . . . , k,

P

(
k⋂
i=1

{Zi ≥ ci}

)
≥

k∏
i=1

P(Zi ≥ ci).

Proof of Theorem 1. Notice that Ni is an integer-valued function only of S2
i , which is the OLS

estimator of σ2. Under Assumption 1, by Lemma 1 and Remark 7,

Xᵀβ̂i

∣∣∣ (X, S2
i

)
∼ N

(
Xᵀβi,

σ2
i

Ni

Xᵀ(X ᵀX )−1X

)
, i= 1, . . . , k. (EC.1)

Moreover, let ξi = (n0m− d)S2
i /σ

2
i for all i= 1, . . . , k. Then, ξi has the chi-square distribution with

(n0m− d) degrees of freedom, for i= 1, . . . , k (see Remark 7).

For notational simplicity, we let V (X) :=Xᵀ(X ᵀX )−1X and temporarily write i∗ = i∗(X) to

suppress the dependence on X. Let Ω(x) := {i :Xᵀβi∗−Xᵀβi ≥ δ|X =x} be the set of alternatives



e-companion to Shen, Hong, and Zhang: Ranking and Selection with Covariates for Personalized Decision Making ec3

outside the IZ given X = x. For each i∈Ω(X), Xᵀβ̂i∗ is independent of Xᵀβ̂i given X. It then

follows from (EC.1) that

Xᵀβ̂i∗ −Xᵀβ̂i

∣∣∣ (X, S2
i∗ , S

2
i

)
∼ N

(
Xᵀβi∗ −Xᵀβi, (σ

2
i∗/Ni∗ +σ2

i /Ni)V (X)
)
. (EC.2)

Hence, letting Z denote a standard normal random variable, for each i∈Ω(X), we have

P
(
Xᵀβ̂i∗ −Xᵀβ̂i > 0

∣∣∣X, S2
i∗ , S

2
i

)
= P

(
Z >

−(Xᵀβi∗ −Xᵀβi)√
(σ2
i∗/Ni∗ +σ2

i /Ni)V (X)

∣∣∣∣∣X, S2
i∗ , S

2
i

)

≥ P

(
Z >

−δ√
[σ2
i∗δ

2/(h2S2
i∗) +σ2

i δ
2/(h2S2

i )]V (X)

∣∣∣∣∣X, S2
i∗ , S

2
i

)

= Φ

(
h√

(n0m− d)(ξ−1
i∗ + ξ−1

i )V (X)

)
, (EC.3)

where the inequality follows the definitions of Ω(X) and Ni, and the last equality follows the

definition of ξi.

Then, conditionally on X, by the definition (2), the CS event must occur if alternative i∗

eliminates all alternatives in Ω(X). Thus,

PCS(X)≥ P

 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X


=E

P
 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X, S2
i∗ ,
{
S2
i : i∈Ω(X)

}∣∣∣∣∣X
 , (EC.4)

where the equality is due to the tower law of conditional expectation. Notice that conditionally on

{X, S2
i∗ ,{S2

i : i∈Ω(X)}}, {Xᵀβ̂i∗ −Xᵀβ̂i : i∈Ω(X)} is multivariate normal by (EC.2). Moreover,

for i, i′ ∈Ω(X) and i 6= i′, due to the conditional independence between Xᵀβ̂i and Xᵀβ̂i′ ,

Cov
(
Xᵀβ̂i∗ −Xᵀβ̂i,X

ᵀβ̂i∗ −Xᵀβ̂i′
∣∣∣X, S2

i∗ ,
{
S2
i : i∈Ω(X)

})
= Var

(
Xᵀβ̂i∗

∣∣∣X, S2
i∗

)
> 0.

Therefore, applying (EC.4) and Lemma EC.2, we have

PCS(X)≥E

 ∏
i∈Ω(X)

P
(
Xᵀβ̂i∗ −Xᵀβ̂i > 0

∣∣∣X, S2
i∗ , S

2
i

)∣∣∣∣∣X


≥E

 ∏
i∈Ω(X)

Φ

(
h√

(n0m− d)(ξ−1
i∗ + ξ−1

i )V (X)

)∣∣∣∣∣X


=

∫ ∞
0

[∫ ∞
0

Φ

(
h√

(n0m− d)(t−1 + s−1)V (X)

)
η(s)ds

]|Ω(X)|

η(t)dt, (EC.5)
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where the second inequality follows from (EC.3), and |Ω(X)| denotes the cardinality of Ω(X). Since

0≤Φ(·)≤ 1 and η(·) is a pdf, the integral inside the square brackets in (EC.5) is no greater than 1.

Moreover, since |Ω(X)| ≤ k− 1, hence,

PCS(X)≥
∫ ∞

0

[∫ ∞
0

Φ

(
h√

(n0m− d)(t−1 + s−1)V (X)

)
η(s)ds

]k−1

η(t)dt.

Then, it follows immediately from the definition of h in (4) that PCSE =E[PCS(X)]≥ 1−α. �

EC.4. Proof of Theorem 2

The proof of Theorem 2 critically relies on Lemma EC.1.

Proof of Theorem 2. Under Assumption 2, for i= 1, . . . , k, j = 1, . . . ,m, Y ij is independent of

S2
ij ; moreover, let σij = σi(xj), then ξij := (n0− 1)S2

ij/σ
2
ij ∼ χ2

n0−1; see, e.g., Examples 5.6a and 5 in

Rencher and Schaalje (2008). Let Si := {S2
i1, . . . , S

2
im}, for i= 1, . . . , k. Then, Si is independent of∑n0

`=1 Yi`(xj) and of {Yi`(xj) : `≥ n0 + 1}. Since Ni1, . . . ,Nim are integer-valued functions only of

Si, by Lemma EC.1, for i= 1, . . . , k,

Xᵀβ̂i

∣∣∣ (X,Si) ∼ N
(
Xᵀβi,X

ᵀ(X ᵀX )−1X ᵀΣiX (X ᵀX )−1X
)
,

where Σi = Diag(σ2
i1/Ni1, . . . , σ

2
im/Nim).

For notational simplicity, let a := (a1, . . . , am)ᵀ :=X (X ᵀX )−1X and write i∗ = i∗(X) to suppress

the dependence on X. Then,

Xᵀβ̂i

∣∣∣ (X,Si) ∼ N

(
Xᵀβi,

m∑
j=1

a2
jσ

2
ij/Nij

)
. (EC.6)

Let Ω(x) := {i :Xᵀβi∗ −Xᵀβi ≥ δ|X = x} be the set of alternatives outside the IZ given X = x.

For each i∈Ω(X), Xᵀβ̂i∗ is independent of Xᵀβ̂i given X. It then follows from (EC.6) that

Xᵀβ̂i∗ −Xᵀβ̂i

∣∣∣ (X,Si∗ ,Si) ∼ N

(
Xᵀβi∗ −Xᵀβi,

m∑
j=1

a2
j(σ

2
i∗j/Ni∗j +σ2

ij/Nij)

)
. (EC.7)

Hence, letting Z denote a standard normal random variable, for each i∈Ω(X), we have

P
(
Xᵀβ̂i∗ −Xᵀβ̂i > 0

∣∣∣X,Si∗ ,Si
)

= P

Z > −(Xᵀβi∗ −Xᵀβi)√∑m

j=1 a
2
j

(
σ2
i∗j/Ni∗j +σ2

ij/Nij

)
∣∣∣∣∣X,Si∗ ,Si


≥ P

Z > −δ√
δ2h−2

Het

∑m

j=1 a
2
j

(
σ2
i∗j/S

2
i∗j +σ2

ij/S
2
ij

)
∣∣∣∣∣X,Si∗ ,Si


= Φ

 hHet√
(n0− 1)

∑m

j=1 a
2
j (1/ξi∗j + 1/ξij)

 , (EC.8)
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where the inequality follows the definition of Ω(X) and Nij, and the last equality from that of ξij.

Then, conditionally on X, by the definition (2), the CS event must occur if alternative i∗

eliminates all alternatives in Ω(X). Thus,

PCS(X)≥ P

 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X


=E

P
 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X,Si∗ ,{Si : i∈Ω(X)}

∣∣∣∣∣X
 , (EC.9)

where the equality is due to the tower law of conditional expectation. Notice that conditionally on

{X,Si∗ ,{Si : i∈Ω(X)}}, {Xᵀβ̂i∗ −Xᵀβ̂i : i∈Ω(X)} is multivariate normal by (EC.7). Moreover,

for i, i′ ∈Ω(X) and i 6= i′, due to the conditional independence between Xᵀβ̂i and Xᵀβ̂i′ ,

Cov
(
Xᵀβ̂i∗ −Xᵀβ̂i,X

ᵀβ̂i∗ −Xᵀβ̂i′
∣∣∣X,Si∗ ,{Si : i∈Ω(X)}

)
= Var

(
Xᵀβ̂i∗

∣∣∣X,Si∗
)
> 0.

Therefore, applying (EC.9) and Lemma EC.2,

PCS(X)≥E

 ∏
i∈Ω(X)

P
(
Xᵀβ̂i∗ −Xᵀβ̂i > 0

∣∣∣X,Si∗ ,Si
)∣∣∣∣∣X


≥E

 ∏
i∈Ω(X)

Φ

 hHet√
(n0− 1)

∑m

j=1 a
2
j (1/ξi∗j + 1/ξij)

∣∣∣∣∣X
 , (EC.10)

where the second inequality follows from (EC.8).

Notice that ξij’s are i.i.d. χ2
n0−1 random variables. Let ξ

(1)
i = min{ξi1, . . . , ξim} be their smallest

order statistic. Then for each i∈Ω(X),
m∑
j=1

a2
j (1/ξi∗j + 1/ξij)≤

m∑
j=1

a2
j

(
1/ξ

(1)
i∗ + 1/ξ

(1)
i

)
=
(

1/ξ
(1)
i∗ + 1/ξ

(1)
i

)
aᵀa. (EC.11)

It then follows from (EC.10) and (EC.11) that

PCS(X)≥E

 ∏
i∈Ω(X)

Φ

 hHet√
(n0− 1)(1/ξ

(1)
i∗ + 1/ξ

(1)
i )aᵀa

∣∣∣∣∣X


=

∫ ∞
0

[∫ ∞
0

Φ

(
hHet√

(n0− 1)(t−1 + s−1)aᵀa

)
γ(1)(s)ds

]|Ω(X)|

γ(1)(t)dt. (EC.12)

Since 0≤Φ(·)≤ 1 and γ(1)(·) is a pdf, the integral inside the square brackets in (EC.12) is no greater

than 1. Moreover, since |Ω(X)| ≤ k− 1, hence,

PCS(X)≥
∫ ∞

0

[∫ ∞
0

Φ

(
hHet√

(n0− 1)(t−1 + s−1)aᵀa

)
γ(1)(s)ds

]k−1

γ(1)(t)dt

=

∫ ∞
0

[∫ ∞
0

Φ

(
hHet√

(n0− 1)(t−1 + s−1)Xᵀ(X ᵀX )−1X

)
γ(1)(s)ds

]k−1

γ(1)(t)dt,
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where the equality holds because

aᵀa= (X (X ᵀX )−1X)ᵀX (X ᵀX )−1X =Xᵀ(X ᵀX )−1X.

It follows immediately from the definition of hHet in (5) that PCSE =E[PCS(X)]≥ 1−α. �

Remark EC.2. We have introduced the smallest order statistics in (EC.11) for computational

feasibility. Without it, Procedure TS+ would still be valid provided that we can compute the

constant hHet from the following equation,

E


∫
Rm
+

[∫
Rm
+

g(X, hHet)
m∏
j=1

γ(sj)ds1 · · ·dsm

]k−1 m∏
j=1

γ(tj)dt1 · · ·dtm

= 1−α,

where

g(X, hHet) := Φ

 hHet√
(n0− 1)

∑m

j=1 a
2
j(t
−1
j + s−1

j )

 .

However, it is prohibitively challenging to solve the above two equations numerically for m≥ 3.

By introducing the smallest order statistic, we can instead solve (5) for hHet, which is much easier

computationally, while the price is hHet will be a little larger then necessary as the lower bound of the

PCSE is further loosened. Also, in analogy to the discussion in §EC.2, when X is high-dimensional,

hHet in (5) can also be solved via Monte Carlo method or stochastic approximation method.

EC.5. Proof of Theorem 3

Proof of Theorem 3. First notice that, conditionally on S2
i , Ni →∞ as δ → 0. Recall that

β̂i = 1
Ni

(X ᵀX )−1X ᵀ
∑Ni

`=1Yi`, and Yi` = (Yi`(x1), . . . , Yi`(xm))ᵀ, i= 1, . . . , k. Under Assumption 3,

Yi`(x) is independent of Yi′`′(x
′) for any (i, `,x) 6= (i′, `′,x′); moreover, Yi`(x) and Yi`′(x) are

identically distributed for ` = `′. Recall that Ni = max{dh2S2
i /δ

2e, n0}, and for small enough δ,

Ni = dh2S2
i /δ

2e. We first establish the following convergence result by the central limit theorem, for

each i= 1, . . . , k. √
Ni

σi

(
1

Ni

Ni∑
`=1

Yi`(x)−xᵀβi

)∣∣∣∣∣S2
i ⇒Z, (EC.13)

as δ→ 0, where “⇒” denotes convergence in distribution, and Z is a standard normal random

variable. To see (EC.13), we split the left-hand side of (EC.13) as follows.

√
Ni

σi

(
1

Ni

Ni∑
`=1

Yi`(x)−xᵀβi

)

=

√
Ni

σi

{
n0

Ni

(
1

n0

n0∑
`=1

Yi`(x)−xᵀβi

)
+
Ni−n0

Ni

(
1

Ni−n0

Ni∑
`=n0+1

Yi`(x)−xᵀβi

)}

=
n0

σi
√
Ni

(
1

n0

n0∑
`=1

Yi`(x)−xᵀβi

)
+

√
Ni−n0√
Ni

√
Ni−n0

σi

(
1

Ni−n0

Ni∑
`=n0+1

Yi`(x)−xᵀβi

)
. (EC.14)
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Conditionally on S2
i , as δ→ 0, Ni→∞, which implies that n0

σi
√
Ni

(
1
n0

∑n0
`=1 Yi`(x)−xᵀβi

)
→ 0

almost surely,

√
Ni−n0√
Ni
→ 1, and

√
Ni−n0

σi

(
1

Ni−n0

Ni∑
`=n0+1

Yi`(x)−xᵀβi

)
⇒Z,

given by the central limit theorem. These three convergence results together with (EC.14) establish

(EC.13).

It is then easy to see √
Ni

σi

(
1

Ni

Ni∑
`=1

Yi`(x)−Xβi

)∣∣∣S2
i ⇒Z,

as δ→ 0, where Z ∼N (0,I) is a standard m-variate normal random vector. Hence,

√
Ni√

V (X)

(
Xᵀβ̂i−Xᵀβi

)∣∣∣{X, S2
i }⇒ σiZ, (EC.15)

as δ→ 0, where V (X) :=Xᵀ(X ᵀX )−1X.

To simplify notation, we write i∗ = i∗(X) to temporarily suppress the dependence on X. Let

Ω(x) := {i :Xᵀβi∗ −Xᵀβi ≥ δ|X = x} be the set of alternatives outside the IZ given X = x. Let

Ui∗ :=

√
Ni∗√
V (X)

(
Xᵀβ̂i∗ −Xᵀβi∗

)
. Then, Ui∗ |{X, S2

i∗}⇒ σi∗Z, as δ→ 0, by (EC.15). For i ∈Ω(X),

let

Ui :=

√
Ni∗√
V (X)

(
Xᵀβ̂i−Xᵀβi

)
=

√
Ni∗√
Ni

√
Ni√

V (X)

(
Xᵀβ̂i−Xᵀβi

)
.

Then, Ui|{X, S2
i∗ , S

2
i }⇒

Si∗
Si
σiZ, as δ→ 0, due to (EC.15) and that

√
Ni∗/

√
Ni→ Si∗/Si as δ→ 0.

For notational simplicity, we temporarily let s denote the cardinality of Ω(X), and refer to the

s alternatives in Ω(X) as alternatives 1, . . . , s, without loss of generality. As Ui∗ ,U1, . . . ,Us are

independent of each other given {X, S2
i∗ , S

2
1 , . . . , S

2
k}, as δ→ 0,

(Ui∗ ,U1, . . . ,Us)
ᵀ
∣∣{X, S2

i∗ , S
2
1 , . . . , S

2
s}⇒

(
σi∗Z0,

Si∗

S1

σ1Z1, . . . ,
Si∗

Ss
σsZs

)ᵀ
,

where Z0,Z1, . . . ,Zs are independent standard normal random variables. Hence, by the continuous

mapping theorem, as δ→ 0,

(Ui∗ −U1, . . . ,Ui∗ −Us)ᵀ
∣∣{X, S2

i∗ , S
2
1 , . . . , S

2
s}⇒

(
σi∗Z0−

Si∗

S1

σ1Z1, . . . , σi∗Z0−
Si∗

Ss
σsZs

)ᵀ
,

(EC.16)

where the limit is multivariate normal, and for i, j ∈ {1, . . . , s} and i 6= j,

Cov

(
σi∗Z0−

Si∗

Si
σiZi, σi∗Z0−

Si∗

Sj
σjZj

∣∣∣X, S2
i∗ , S

2
1 , . . . , S

2
s

)
= σ2

i∗ > 0. (EC.17)
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Now we have

lim inf
δ→0

PCS(X)

≥ lim inf
δ→0

P

 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X
 (EC.18)

= lim inf
δ→0

E

P
 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X, S2
i∗ ,
{
S2
i : i∈Ω(X)

}∣∣∣∣∣X
 (EC.19)

≥ E

lim inf
δ→0

P

 ⋂
i∈Ω(X)

{
Xᵀβ̂i∗ −Xᵀβ̂i > 0

}∣∣∣∣X, S2
i∗ ,
{
S2
i : i∈Ω(X)

}∣∣∣∣∣X
 (EC.20)

= E

lim inf
δ→0

P

 ⋂
i∈Ω(X)

{
Ui∗ −Ui >

−(Xᵀβi∗ −Xᵀβi)√
V (X)/Ni∗

}∣∣∣∣X, S2
i∗ ,
{
S2
i : i∈Ω(X)

}∣∣∣∣∣X
 (EC.21)

= E

P
 ⋂
i∈Ω(X)

{
σi∗Z0−

Si∗

Si
σiZi >

−(Xᵀβi∗ −Xᵀβi)√
V (X)/Ni∗

}∣∣∣∣X, S2
i∗ ,
{
S2
i : i∈Ω(X)

}∣∣∣∣∣X
 (EC.22)

≥ E

 ∏
i∈Ω(X)

P

(
σi∗Z0−

Si∗

Si
σiZi >

−(Xᵀβi∗ −Xᵀβi)√
V (X)/Ni∗

∣∣∣∣X, S2
i∗ , S

2
i

)∣∣∣∣∣X
 (EC.23)

≥ E

 ∏
i∈Ω(X)

P

((
σ2
i∗ +

S2
i∗

S2
i

σ2
i

)1/2

Z >
−δ√

V (X)δ2/(h2S2
i∗)

∣∣∣∣X, S2
i∗ , S

2
i

)∣∣∣∣∣X
 (EC.24)

= E

 ∏
i∈Ω(X)

P

(
Z >

−h√
[σ2
i∗/S

2
i∗ +σ2

i /S
2
i ]V (X)

)∣∣∣∣∣X


= E

 ∏
i∈Ω(X)

Φ

(
h√

(n0m− d)(ξ−1
i∗ + ξ−1

i )V (X)

)∣∣∣∣∣X
 ,

where (EC.18) holds because the CS event must occur if alternative i∗ eliminates all alternatives

in Ω(X), (EC.19) is due to the tower law of conditional expectation, (EC.20) is due to Fatou’s

Lemma, (EC.21) is by the definitions of Ui∗ and Ui, (EC.22) is by (EC.16), (EC.23) is obtained by

Lemma EC.2 together with (EC.17), and (EC.24) follows from the definitions of Ω(X) and Ni∗ .

The rest of the proof follows the same argument as that in the proof of Theorem 1. �

EC.6. Choosing PCSmin as Target

EC.6.1. Two-Stage Procedures

If we use PCSmin = minx∈Θ PCS(x) to measure correct selection across the population, and set the

pre-specified target as PCSmin ≥ 1− α, instead of PCSE ≥ 1− α, we are in a more conservative

case wherein we require the selection policy produced by the selection procedure to make correct
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selection with probability at least 1−α for all values of the covariates. In this case, both Procedure

TS and Procedure TS+ can be revised slightly to retain statistical validity under the new criterion.

In particular, we only need change the definition of the constant h (resp., hHet) in Procedure TS

(resp., Procedure TS+), while keeping the other parts of the procedure the same. The following

results are parallel to those for PCSE, that is, Theorems 1–4. The proofs are essentially the same

and thus we omit the details.

Theorem EC.1. Suppose that Procedure TS is used to solve the R&S-C problem with the constant

h in the procedure being solved from

min
x∈Θ


∫ ∞

0

[∫ ∞
0

Φ

(
h√

(n0m− d)(t−1 + s−1)xᵀ(X ᵀX )−1x

)
η(s)ds

]k−1

η(t)dt

= 1−α. (EC.25)

� If Assumption 1 is satisfied, then PCSmin ≥ 1−α.

� If Assumption 3 is satisfied, then lim infδ→0 PCSmin ≥ 1−α.

Theorem EC.2. Suppose that Procedure TS+ is used to solve the R&S-C problem with the

constant hHet in the procedure being solved from

min
x∈Θ


∫ ∞

0

[∫ ∞
0

Φ

(
hHet√

(n0− 1)(t−1 + s−1)xᵀ(X ᵀX )−1x

)
γ(1)(s)ds

]k−1

γ(1)(t)dt

= 1−α.

(EC.26)

� If Assumption 2 is satisfied, then PCSmin ≥ 1−α.

� If Assumption 4 is satisfied, then lim infδ→0 PCSmin ≥ 1−α.

Remark EC.3. It is computationally easier to solve for h from (EC.25) than from (4). First,

there is no need to compute the expectation with respect to the distribution of x in (EC.25),

which amounts to multidimensional numerical integration. Second, note that the minimizer of the

left-hand side of (EC.25) is the same as the maximizer of xᵀ(X ᵀX )−1x, since the function Φ(·) is

increasing. Since X ᵀX is nonsingular, it is easy to see that xᵀ(X ᵀX )−1x is convex in x. Thus, if Θ

is a bounded closed set, the maximizer must lie in the set of all extreme points of the convex hull of

Θ; see, for example, Theorem 32.2 and Corollary 32.3.3 in Rockafellar (1970). A similar argument

can be made for the computation of hHet by comparing (EC.26) with (5).

EC.6.2. Numerical Results

Define the achieved PCSmin as

P̂CSmin := min
x∈{x1,...,xT }

1

R

R∑
r=1

I
{
µi∗(x)(x)−µî∗r(x)(x)< δ

}
.
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Table EC.1 reports P̂CSE and P̂CSmin when the target is PCSmin ≥ 95%, while Table EC.2 reports

the case when the target is PCSE ≥ 95%.

First, results in Table EC.1 show that Procedure TS and Procedure TS+ with h and hHet

computed from (EC.25) and (EC.26), respectively, can deliver the target PCSmin in their respective

domains. In particular, Procedure TS using h in (EC.25) can deliver the target PCSmin if the

simulation errors are homoscedastic, while Procedure TS+ using h in (EC.26) can do the same

even when the simulation errors are heteroscedastic. Moreover, the achieved PCSmin is higher than

Table EC.1 Results When the Target is PCSmin ≥ 95%.

Procedure TS (using h in (EC.25)) Procedure TS+ (using h in (EC.26))

Problem h Sample P̂CSE P̂CSmin hHet Sample P̂CSE P̂CSmin

(0) Benchmark 5.927 140,543 0.9989 0.9609 6.990 195,337 0.9997 0.9840
(1) k= 2 4.362 30,447 0.9958 0.9481 5.132 42,164 0.9987 0.9709
(2) k= 8 6.481 268,749 0.9993 0.9657 7.651 374,716 0.9999 0.9852
(3) Non-GSC 5.927 140,542 1.0000 0.9958 6.990 195,337 1.0000 0.9980
(4) IV 5.927 158,139 0.9989 0.9590 6.990 219,871 0.9998 0.9869
(5) DV 5.927 158,100 0.9990 0.9628 6.990 219,741 0.9998 0.9837

(6) Het 5.927 175,698 0.9952 0.9032 6.990 244,488 0.9999 0.9904
(7) d= 2 7.155 51,161 0.9954 0.9600 7.648 58,493 0.9971 0.9708
(8) d= 6 3.792 230,221 0.9994 0.9667 4.804 369,307 1.0000 0.9944
(9) Normal Dist 5.927 140,550 0.9990 0.9623 6.990 195,404 0.9997 0.9851

(10) k= 100 7.385 3,272,127 0.9999 0.9754 8.678 4,518,029 1.0000 0.9941
(11) d= 50 9.444 4,370,569 1.0000 0.9998 12.631 7,818,201 1.0000 1.0000
(12) k= 100, d= 50 13.875 1.89× 108 1.0000 1.0000 18.970 3.53× 108 1.0000 1.0000

Note. In the presence of heteroscedasticity, the boxed number suggests that Procedure TS fails to deliver the target PCSmin,
whereas the bold number suggests that Procedure TS+ succeeds to do so.

Table EC.2 Results When the Target is PCSE ≥ 95%.

Procedure TS (using h in (4)) Procedure TS+ (using h in (5))

Problem h Sample P̂CSE P̂CSmin hHet Sample P̂CSE P̂CSmin

(0) Benchmark 3.423 46,865 0.9610 0.7476 4.034 65,138 0.9801 0.8120
(1) k= 2 2.363 8,947 0.9501 0.8094 2.781 12,380 0.9702 0.8541
(2) k= 8 3.822 93,542 0.9650 0.7290 4.510 130,200 0.9842 0.8098
(3) Non-GSC 3.423 46,865 0.9987 0.9400 4.034 65,138 0.9994 0.9599
(4) IV 3.423 52,698 0.9618 0.7589 4.034 73,265 0.9807 0.8184
(5) DV 3.423 52,720 0.9614 0.7544 4.034 73,246 0.9806 0.8143

(6) Het 3.423 58,626 0.9232 0.6368 4.034 81,555 0.9846 0.8625
(7) d= 2 4.612 21,288 0.9593 0.7941 4.924 24,266 0.9662 0.8223
(8) d= 6 2.141 73,428 0.9656 0.7662 2.710 117,626 0.9895 0.8589
(9) Normal Dist 3.447 47,529 0.9626 0.7579 4.063 66,061 0.9821 0.8230

(10) k= 100 4.346 1,133,384 0.9758 0.5952 5.117 1,570,911 0.9918 0.7218
(11) d= 50 3.222 508,977 0.9583 0.7522 4.312 911,326 0.9926 0.8749
(12) k= 100, d= 50 4.886 23,400,677 0.9765 0.6189 6.702 44,024,486 0.9991 0.8854

Note. In the presence of heteroscedasticity, the boxed number suggests that Procedure TS fails to deliver the target PCSE,
whereas the bold number suggests that Procedure TS+ succeeds to do so.
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the target in general; see, e.g., the column “P̂CSmin” under “Procedure TS” of Table EC.1, except

the entry for Problem (6). This kind of conservativeness is also observed in Table EC.2, where

Procedure TS using h in (4) and Procedure TS+ using h in (5) are used when the objective is to

meet the target PCSE.

Second, the numerical results show that PCSmin is a much more conservative criterion than

PCSE. In particular, if the target is PCSE ≥ 1−α, then P̂CSmin is significantly lower than 1−α,

except for Problem (3), in which the non-GSC amplifies the procedures’ conservativeness stemming

from the IZ formulation and provides the “extra” sample size needed for making P̂CSmin reach the

target; see Table EC.2. By contrast, if the target is PCSmin ≥ 1−α, then P̂CSE is virtually 1 for

each problem-procedure combination; see Table EC.1. Another indication of the conservativeness of

PCSmin is that in each problem-procedure combination, the sample size when using PCSmin as the

criterion is about three times larger than that when using PCSE. For example, in Table EC.2 the

sample size for Problem (0) with Procedure TS is 46,865, whereas the corresponding sample size

in Table EC.1 is 140,543.

EC.7. Asymptotic Sample Size Analysis

For ease of presentation, we relax the integrality constraint of the sample size, but it has no essential

impact on the asymptotic analysis of the sample size.

EC.7.1. Procedure TS

The expected total sample size of Procedure TS is

NTS =E
[ k∑
i=1

mNi

]
=mh2

k∑
i=1

E
[
max

{
S2
i /δ

2, n0/h
2
}]
, (EC.27)

where h is solved from (4) if PCSE is used as the criterion, whereas from (EC.25) if PCSmin is used.

We will provide an asymptotic upper bound on NTS in two asymptotic regimes, i.e., as k→∞ and

as α→ 0. Note that the expression of NTS involves both h2 and 1/h2, which depend on k and α.

We first establish in Lemma EC.3 both a lower bound and a upper bound on h. Its proof is deferred

to §EC.7.3.

Lemma EC.3. Let h be the constant solved from either (4) or (EC.25), and let α∈ (0,1/2) be a

constant. Then,

0<h≤ h≤
{

2(n0m− d)
[(2(k− 1)

α

) 2
n0m−d − 1

]
×max

x∈Θ
xᵀ(X ᵀX )−1x

}1/2

,

for all k≥ 2 and α≤ α, where h is a solution of (4) for k= 2 and α= α.
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Then, it follows immediately from (EC.27) and Lemma EC.3 that for any k and small α,

NTS ≤ 2m(n0m− d)
[(2(k− 1)

α

) 2
n0m−d − 1

]
×max

x∈Θ
xᵀ(X ᵀX )−1x×

k∑
i=1

E
[
max

{
S2
i /δ

2, n0/h
2
}]

≤CTS× k
(k
α

) 2
n0m−d

,

where CTS is a constant independent of k and α, given by

CTS = 2m(n0m− d)× 2
2

n0m−d ×max
x∈Θ

xᵀ(X ᵀX )−1x× max
1≤i≤k

E
[
max

{
S2
i /δ

2, n0/h
2
}]
.

Hence, we conclude that NTS =O(k
1+ 2

n0m−d ) as k→∞, and NTS =O(α
− 2

n0m−d ) as α→ 0.

EC.7.2. Procedure TS+

The expected total sample size of Procedure TS+ is

NTS+ =E
[ k∑
i=1

m∑
j=1

Nij

]
= h2

Het

k∑
i=1

m∑
j=1

E
[
max

{
S2
ij/δ

2, n0/h
2
Het

}]
, (EC.28)

where hHet is solved from (5) if PCSE is used as the criterion, whereas from (EC.26) if PCSmin is

used. Similar to the analysis in §EC.7.1, we first give bounds on hHet in Lemma EC.4. The proof is

presented in §EC.7.4.

Lemma EC.4. Let hHet be the constant solved either from (5) or (EC.26), and let α ∈ (0,1/2)

be a constant. Then,

0<hHet ≤ hHet ≤
{

2(n0− 1)
[(2m(k− 1)

α

) 2
n0−1

− 1
]
×max

x∈Θ
xᵀ(X ᵀX )−1x

}1/2

,

for all k≥ 2 and α≤ α, where hHet is a solution of (5) when k= 2 and α= α.

Then, it follows from (EC.27) and Lemma EC.4 that for any k and small α,

NTS+ ≤ 2(n0− 1)
[(2m(k− 1)

α

) 2
n0−1

− 1
]
×max

x∈Θ
xᵀ(X ᵀX )−1x×

k∑
i=1

m∑
j=1

E
[
max

{
S2
ij/δ

2, n0/hHet
2
}]
,

≤CTS+ × k
(k
α

) 2
n0−1

,

where CTS+ is a constant independent of k and α, given by

CTS+ = 2(n0− 1)× (2m)
2

n0−1 ×max
x∈Θ

xᵀ(X ᵀX )−1x× max
1≤i≤k

m∑
j=1

E
[
max

{
S2
ij/δ

2, n0/hHet
2
}]
.

Hence, we conclude that NTS+ =O(k
1+ 2

n0−1 ) as k→∞, and NTS =O(α
− 2

n0−1 ) as α→ 0.

Remark EC.4. It is straightforward to see that with the same design matrix X and ini-

tial sample size n0, NTS+ = O(k
1+ 2

n0−1α
− 2

n0−1 ) has a higher order of magnitude than NTS =

O(k
1+ 2

n0m−dα
− 2

n0m−d ) as k→∞ or α→ 0, since n0m− d≥ n0− 1 for all m≥ d≥ 1.
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Remark EC.5. For Procedure TS+, m is not involved in the order of magnitude of NTS+ as

k→∞ or α→ 0, but only takes effect in the leading constant CTS+ . By contrast, a larger value

of m leads to a lower order of magnitude of NTS for Procedure TS. An intuitive explanation for

the above difference is that, increasing m will result in a more accurate estimation of the common

variance σ2
i in Procedure TS, while it does not affect estimation of the variances in Procedure TS+

since they are estimated separately. This suggests that Procedure TS+ for the linear models will

favor the minimal m, that is, m= d.

EC.7.3. Proof of Lemma EC.3

We first prove the lower bound. Let

f(x, h) :=

∫ ∞
0

[∫ ∞
0

Φ

(
h√

(n0m− d)(t−1 + s−1)xᵀ(X ᵀX )−1x

)
η(s)ds

]k−1

η(t)dt.

Then, h solved from (4) satisfies E[f(X, h)] = 1 − α, whereas h solved from (EC.25) satisfies

minx∈Θ f(x, h) = 1−α. Note that both E[f(X, h)] and minx∈Θ f(x, h) are increasing functions in

h, so a smaller α will yield a larger h. It is also clear that a larger k will yield a larger h. Hence,

h defined in Lemma EC.3 is smaller than h solved from (4) for all k≥ 2 and α≤ α. Note that h

solved from (4) is smaller than h solved from (EC.25) with everything else the same. The lower

bound is then established.

The proof for the upper bound is similar to the proof of Lemma 4 in Zhong and Hong (2020).

Specifically, let

h∗ :=

{
2(n0m− d)

[(2(k− 1)

α

) 2
n0m−d − 1

]
×max

x∈Θ
xᵀ(X ᵀX )−1x

}1/2

.

To show that h, which is solved from either (4) or (EC.25), is no larger than h∗, it suffices to show

that E[f(X, h∗)]≥ 1− α and minx∈Θ f(x, h∗)≥ 1− α, which is clearly true if we can show that

f(x, h∗)≥ 1−α for any x∈Θ.

Let Z1, . . . ,Zk−1 be (k− 1) independent standard normal random variables. Let ξ1, . . . , ξk be k

independent chi-square random variables with (n0m−d) degrees of freedom. Moreover, assume that

Zi is independent of ξi′ , for 1≤ i≤ k− 1, 1≤ i′ ≤ k. Then, for any x∈Θ,

f(x, h∗) =E

[
P

(
k−1⋂
i=1

{
Zi ≤

h∗√
(n0m− d)(ξ−1

k + ξ−1
i )xᵀ(X ᵀX )−1x

}∣∣∣∣∣ξk
)]

≥E

[
1−

k−1∑
i=1

P

(
Zi >

h∗√
(n0m− d)(ξ−1

k + ξ−1
i )xᵀ(X ᵀX )−1x

∣∣∣∣∣ξk
)]

= 1− (k− 1)×P

(
Z1 >

h∗√
(n0m− d)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)
. (EC.29)
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By the Chernoff bound, P(Z1 >a)≤ exp
{
− a2

2

}
for all a> 0. Hence,

P

(
Z1 >

h∗√
(n0m− d)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)

≤E
[
exp

{
− (h∗)2

2(n0m− d)(ξ−1
k + ξ−1

1 )xᵀ(X ᵀX )−1x

}]
≤E

[
exp

{
−
(

2(k−1)

α

) 2
n0m−d − 1

ξ−1
k + ξ−1

1

}]

≤E

[
exp

{
−
(

2(k−1)

α

) 2
n0m−d − 1

2
ξ(1)

}]
, (EC.30)

where ξ(1) := min{ξk, ξ1} is the smallest order statistic of two independent chi-square random

variables with (n0m− d) degrees of freedom. Here, the second inequality holds by the definition of

h∗. Let fn0m−d(·) and Fn0m−d(·) denote the pdf and cdf of the chi-square random variables with

(n0m−d) degrees of freedom, respectively. Then the pdf of ξ(1) is known as 2fn0m−d(t)(1−Fn0m−d(t)).

Hence, following (EC.30), we have

P

(
Z1 >

h∗√
(n0m− d)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)

≤
∫ ∞

0

exp

{
−
(

2(k−1)

α

) 2
n0m−d − 1

2
t

}
× 2fn0m−d(t)(1−Fn0m−d(t))dt

≤ 2

∫ ∞
0

exp

{
−
(

2(k−1)

α

) 2
n0m−d − 1

2
t

}
fn0m−d(t)dt

= 2E

[
exp

{
−
(

2(k−1)

α

) 2
n0m−d − 1

2
ξ1

}]

= 2
[
1 +

(2(k− 1)

α

) 2
n0m−d − 1

]−(n0m−d)/2

=α/(k− 1), (EC.31)

where the second equality is due to the moment generating function of the chi-square random

variables with (n0m− d) degrees of freedom. Combining (EC.29) and (EC.31), we can conclude

that f(x, h∗)≥ 1−α for any x∈Θ, which completes the proof. �

EC.7.4. Proof of Lemma EC.4

The lower bound can be proved using the same argument for proving the lower bound in Lemma

EC.3. Let

h∗Het :=

{
2(n0− 1)

[(2m(k− 1)

α

) 2
n0−1 − 1

]
×max

x∈Θ
xᵀ(X ᵀX )−1x

}1/2

,
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and let

f(x, hHet) :=

∫ ∞
0

[∫ ∞
0

Φ

(
hHet√

(n0− 1)(t−1 + s−1)xᵀ(X ᵀX )−1x

)
γ(1)(s)ds

]k−1

γ(1)(t)dt.

It then suffices to show that f(x, h∗Het)≥ 1−α for any x∈Θ, in order to prove the upper bound.

Let Z1, . . . ,Zk−1 be (k− 1) independent standard normal random variables. Let ξ1, . . . , ξk be k

independent random variables, each of which is the smallest order statistic of m chi-square random

variables with (n0 − 1) degrees of freedom. Moreover, assume that Zi is independent of ξi′ , for

1≤ i≤ k− 1, 1≤ i′ ≤ k. With the same argument leading to (EC.29), we have

f(x, h∗Het)≥ 1− (k− 1)×P

(
Z1 >

h∗Het√
(n0− 1)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)
. (EC.32)

With the same argument leading to (EC.30), we have

P

(
Z1 >

h∗Het√
(n0− 1)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)
≤E

[
exp

{
−
(

2m(k−1)

α

) 2
n0−1 − 1

2
ξ(1)

}]
,

where ξ(1) := min{ξk, ξ1} is the smallest order statistic of 2m independent chi-square random variables

with (n0− 1) degrees of freedom, and its pdf is 2mfn0−1(t)(1−Fn0−1(t))2m−1. Then, with the same

argument leading to (EC.31), we have

P

(
Z1 >

h∗Het√
(n0− 1)(ξ−1

k + ξ−1
1 )xᵀ(X ᵀX )−1x

)
≤ 2m

∫ ∞
0

exp

{
−
(

2m(k−1)

α

) 2
n0−1 − 1

2
t

}
fn0−1(t)dt

= 2mE

[
exp

{
−
(

2m(k−1)

α

) 2
n0−1 − 1

2
ξ0

}]
= α/(k− 1), (EC.33)

where ξ0 is a chi-square random variables with (n0− 1) degrees of freedom. Combining (EC.32) and

(EC.33), we can conclude that f(x, h∗Het)≥ 1−α for any x∈Θ, which completes the proof. �

EC.8. Proof of Theorem 5

Theorem 5 can be viewed as a corollary of the following Theorem EC.3. Therefore we only provide

the proof of Theorem EC.3 and remark that Theorem 5 holds immediately.

Theorem EC.3. Let Nij denote the number of samples of alternative i taken at design point

xj, and Ŷij denote their means, for i = 1, . . . , k, j = 1, . . . ,m. Let Ŷi = (Ŷi1, . . . , Ŷim)ᵀ and β̂i =

(X ᵀX )−1X ᵀŶi for i= 1, . . . , k. Under Assumption 1 or 2, the GSC defined in (7) is the LFC for

a selection procedure of the R&S-C problem with the IZ formulation and a fixed design, if all the

following properties hold:
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(i) The selected alternative is î∗(x) = arg max
1≤i≤k

{
xᵀβ̂i

}
.

(ii) Conditionally on {Nij : 1≤ i≤ k,1≤ j ≤m}, Ŷij ∼N
(
xᵀjβi, σ

2
i (xj)/Nij

)
for all i= 1, . . . , k,

j = 1, . . . ,m, and Ŷij is independent of Ŷi′j′ if (i, j) 6= (i′, j′).

(iii) Nij is independent of the configuration of the means, for all i= 1, . . . , k, j = 1, . . . ,m.

Proof. Suppose that β= (βi : 1≤ i≤ k) follows the GSC. Then, i∗(x)≡ 1 and by Property (i),

conditionally on X =x,

PCS(x;β) = P
(
xᵀβ̂1−xᵀβ̂i > 0, ∀i= 2, . . . , k

)
=E

[
P
(
xᵀβ̂1−xᵀβ̂i > 0, ∀i= 2, . . . , k

∣∣∣Nij,1≤ i≤ k,1≤ j ≤m
}]
, (EC.34)

where the expectation is taken with respect to the Nij’s and we write PCS(x;β) to stress its

dependence on β since we will consider a different configuration of the means later.

By Property (ii), conditionally on X =x and {Nij : 1≤ i≤ k,1≤ j ≤m}, xᵀβ̂i is independent of

xᵀβ̂i′ for i 6= i′; moreover,

xᵀβ̂i
∣∣{Ni,j : 1≤ i≤ k,1≤ j ≤m} ∼ N

(
xᵀβi, σ̃

2(x,Σi)
)
,

where σ̃2(x,Σi) := xᵀ(X ᵀX )−1X ᵀΣiX (X ᵀX )−1x and Σi := Diag(σ2
i (x1)/Ni1, . . . , σ

2
i (xm)/Nim). In

particular, σ̃2(x,Σi) does not depend on β by Property (iii). Hence, if we let φ(·;µ,σ2) denote the

pdf of N (µ,σ2), it follows from (EC.34) that

PCS(x;β) =E

[∫ +∞

−∞

k∏
i=2

Φ

(
t−xᵀβi
σ̃(x,Σi)

)
φ(t;xᵀβ1, σ̃

2(x,Σ1))dt

]
. (EC.35)

We now consider a different configuration of the means, β† = (β†i : 1≤ i≤ k). We will show below

that PCS(x;β†)≥ PCS(x;β) for all x ∈Θ. For each i= 1, . . . , k, we define sets Θ
(1)
i and Θ

(2)
i as

follows,

Θ
(1)
i = {x∈Θ :xᵀβ†i −xᵀβ

†
j ≥ δ for all j 6= i},

Θ
(2)
i = {x∈Θ :xᵀβ†i −xᵀβ

†
j ≥ 0 for all j 6= i, and xᵀβ†i −xᵀβ

†
j < δ for some j 6= i}.

Clearly, {Θ(1)
i ,Θ

(2)
i : i = 1, . . . , k} are mutually exclusive and Θ =

⋃k

i=1

(
Θ

(1)
i

⋃
Θ

(2)
i

)
. We next

conduct our analysis for each Θ
(1)
i and Θ

(2)
i , respectively.

� Case 1: Θ
(1)
1 6= ∅. For any x∈Θ

(1)
1 , xᵀβ†1−xᵀβ

†
i ≥ δ for each i= 2, . . . , k. By the same analysis

that leads to (EC.35), we can show that for any x∈Θ
(1)
1 ,

PCS(x;β†)

=E

[∫ +∞

−∞

k∏
i=2

Φ

(
t−xᵀβ†i
σ̃(x,Σi)

)
φ(t;xᵀβ†1, σ̃

2(x,Σ1))dt

]
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=E

[∫ +∞

−∞

k∏
i=2

Φ

(
t+ (xᵀβ†1−xᵀβ1)−xᵀβ†i

σ̃(x,Σi)

)
φ(t+ (xᵀβ†1−xᵀβ1);xᵀβ†1, σ̃

2(x,Σ1))dt

]

=E

[∫ +∞

−∞

k∏
i=2

Φ

(
t− (xᵀβ1−xᵀβ†1 +xᵀβ†i )

σ̃(x,Σi)

)
φ(t;xᵀβ1, σ̃

2(x,Σ1))dt

]
.

Due to (7) and the fact that xᵀβ†1 −xᵀβ
†
i ≥ δ for each i= 2, . . . , k, (xᵀβ1 −xᵀβ†1 +xᵀβ†i )≤

xᵀβi, for i= 2, . . . , k. Since Φ(·) is an increasing function, it is straightforward to see that

PCS(x;β†)≥PCS(x;β) for any x∈Θ
(1)
1 .

� Case 2: Θ
(2)
1 6= ∅. Fix an arbitrary x∈Θ

(2)
1 , let Ω(x) := {i= 2, . . . , k :xᵀβ†1−xᵀβ

†
i ≥ δ}. Then,

Ω(x)⊂ {2, . . . , k} by the definition of Θ
(2)
1 . If Ω(x) = ∅, then each alternative i, i= 2, . . . , k, is

in the IZ, and thus PCS(x,β†) = 1. Otherwise, (xᵀβ1−xᵀβ†1 +xᵀβ†i )≤xᵀβi for each i∈Ω(x).

Hence,

PCS(x;β†)≥ P
(
xᵀβ̂†1−xᵀβ̂

†
i > 0, ∀i∈Ω(x)

)
=E

∫ +∞

−∞

∏
i∈Ω(x)

Φ

(
t−xᵀβ†i
σ̃(x,Σi)

)
φ(t;xᵀβ†1, σ̃

2(x,Σ1))dt


=E

∫ +∞

−∞

∏
i∈Ω(x)

Φ

(
t− (xᵀβ1−xᵀβ†1 +xᵀβ†i )

σ̃(x,Σi)

)
φ(t;xᵀβ1, σ̃

2(x,Σ1))dt


≥E

∫ +∞

−∞

∏
i∈Ω(x)

Φ

(
t−xᵀβi
σ̃(x,Σi)

)
φ(t;xᵀβ1, σ̃

2(x,Σ1))dt


≥PCS(x;β),

where the last inequality holds because 0≤Φ(·)≤ 1 and |Ω(x)|<k− 1.

� Other Cases. For each i = 2, . . . , k, if Θ
(1)
i 6= ∅, then we can simply swap the indexes of

alternative 1 and alternative i, and follow the same analysis as in Case 1. Likewise, for each

i= 2, . . . , k, if Θ
(2)
i 6= ∅, we can follow the analysis in Case 2.

Therefore, we conclude that PCS(x;β†) ≥ PCS(x;β) for any x ∈ Θ. So E [PCS(X;β†)] ≥

E [PCS(X;β)]. Moreover, the foregoing analysis also shows that, the equality may hold only if

random vector X is degenerate to a constant vector. Thus, the GSC is the LFC. �

Remark EC.6. Obviously, both Procedure TS and TS+ possess those properties specified in

Theorem EC.3, so Theorem 5 holds immediately as a corollary of Theorem EC.3.

EC.9. Proof of Theorem 6

Proof of Theorem 6. It suffices to show that the extreme design yields the minimal value of the

solution h to (4) among all symmetric designs. We first notice that by (4), the design matrix X

takes effect on the total sample size of Procedure TS only through the form X ᵀX . In the sequel,
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two design matrices X and X̃ are said to be equivalent if X ᵀX = X̃ ᵀX̃ . For instance, swapping any

two rows of X leads to an equivalent design matrix since it does not change X ᵀX .

Let X∗ denote the design matrix corresponding to the extreme design S1 = · · ·= Sb = S0, and X†
denote a nonequivalent design matrix corresponding to a symmetric design. The key of the proof is

to show that

xᵀ(X ᵀ∗X∗)−1x≤xᵀ(X ᵀ†X†)−1x, x∈Θ, (EC.36)

where the equality holds if and only if x=
(
1, l2+u2

2
, . . . , ld+ud

2

)ᵀ
, which is the center of Θ.

To see this, let h∗ and h† denote the solution h of (4) for X∗ and X†, respectively. Notice that

the double integral on the left-hand side of (4) is strictly increasing in h whereas strictly decreasing

in xᵀ(X ᵀX )−1x. Hence, if (EC.36) holds, then h∗ ≤ h†, where the equality holds if and only if the

random vector X ≡
(
1, l2+u2

2
, . . . , ld+ud

2

)ᵀ
.

Now we prove (EC.36). For ease of presentation, we first consider a design matrix that corresponds

to a general symmetric design. Since the first element of the covariates is always 1, the b(2d−1)× d
design matrix X is

X =



(a1
1)ᵀ

...
(a1

2d−1)ᵀ

...
(ab1)ᵀ

...
(ab

2d−1)ᵀ


=



1 a1
1,2 · · · a1

1,d
...

...
...

...
1 a1

2d−1,2
· · · a1

2d−1,d
...

...
...

...
1 ab1,2 · · · ab1,d
...

...
...

...
1 ab

2d−1,2
· · · ab

2d−1,d


,
(
1 v2 · · · vd

)
,

where 1 denotes the b(2d−1)× 1 vector of ones. We further set Z := (v2, . . . ,vd). Then X = (1,Z),

and

X ᵀX =

(
1ᵀ1 1ᵀZ
Zᵀ1 ZᵀZ

)
. (EC.37)

Notice that m = b(2d−1) = 1ᵀ1. Then, for any x = (1,zᵀ)ᵀ, where z ∈ Rd−1, standard matrix

calculation (Horn and Johnson 2013, §0.8.5) yields that

xᵀ(X ᵀX )−1x=
(
z−Zᵀ1m−1

)ᵀA(Z)−1
(
z−Zᵀ1m−1

)
+m−1,

where A(Z) :=ZᵀZ −Zᵀ1m−11ᵀZ is the Schur complement of the block 1ᵀ1 of X ᵀX in (EC.37)

and it is nonsingular because X ᵀX is nonsingular. The symmetry of design points implies that

vᵀw1m
−1 = lw+uw

2
, for w= 2, . . . , d. So, by letting s :=

(
l2+u2

2
, . . . , ld+ud

2

)ᵀ
, we have Zᵀ1m−1 = s and

xᵀ(X ᵀX )−1x= (z− s)ᵀA(Z)−1 (z− s) +m−1. (EC.38)

Hence, if x=
(
1, l2+u2

2
, . . . , ld+ud

2

)ᵀ
, then z = s and thus xᵀ(X ᵀX )−1x=m−1. Since both X∗ and X†

are symmetric designs, xᵀ(X ᵀ∗X∗)−1x=xᵀ(X ᵀ†X†)−1x if x=
(
1, l2+u2

2
, . . . , ld+ud

2

)ᵀ
.
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It remains to prove the strict inequality in (EC.36) for z 6= s. Let X∗ = (1,Z∗) and X† = (1,Z†).

Due to (EC.38), it suffices to show that A(Z†)−1−A(Z∗)−1 is positive definite. This is equivalent

to showing that A(Z∗)−A(Z†) is positive definite (Horn and Johnson 2013, Corollary 7.7.4), i.e.,

for any nonzero z ∈Rd−1,

zᵀA(Z∗)z > zᵀA(Z†)z. (EC.39)

Let I denote the b(2d−1)× b(2d−1) identity matrix. Then,

A(Z) =Zᵀ
(
I −1m−11ᵀ

)
Z =Zᵀ

(
I −1m−11ᵀ

) (
I −1m−11ᵀ

)
Z = (Z −1sᵀ)

ᵀ
(Z −1sᵀ) ,

since Zᵀ1m−1 = s. Denote z := (z2, . . . , zd)
ᵀ and s := (s2, . . . , sd)

ᵀ. Then

zᵀA(Z)z = [(Z −1sᵀ)z]
ᵀ
[(Z −1sᵀ)z] =

d∑
w=2

d∑
q=2

zwzq(vw−1sw)ᵀ(vq −1sq).

Thanks to the symmetry of the design points, it is easy to verify that

(vw−1sw)ᵀ(vq −1sq) =

{
0, if w 6= q,

2d−1
∑b

j=1(ρjw)2, if w= q,

where ρjw :=
∣∣aj1,w− sw∣∣= · · ·= ∣∣aj2d−1,w

− sw
∣∣ is the common distance of aj1, . . . ,a

j

2d−1 to the center

of Θ along coordinate xw, for w= 2, . . . , d and j = 1, . . . , b. Hence,

zᵀA(Z)z = 2d−1

d∑
w=2

z2
w

b∑
j=1

(ρjw)2.

Since ρjw ∈
(
0, uw−lw

2

]
, obviously, {ρjw = uw−lw

2
|w = 2, . . . , d, j = 1, . . . , b} maximizes zᵀA(Z)z.

Because z is nonzero, i.e., at least one zw is not zero, the solution is unique in terms of ρjw. Notice

that this solution exactly means that S1 = · · ·= Sb = S0, i.e., the extreme design. Hence, (EC.39) is

proved and the proof of (EC.36) is completed. �

EC.10. Proof of Theorem 7

Before the proof, we first introduce formally the D-optimality and the G-optimality of experimental

designs in the linear regression setting. Consider the linear regression model

Y (x) =xᵀβ+ ε,

where β,x ∈ Rd and ε is random error with mean 0 and variance σ2. Assuming the design

region is Θ, we choose m design points with xi ∈Θ, i= 1, . . . ,m. Let Y = (Y (x1), . . . , Y (xm))ᵀ,

X = (x1, . . . ,xm)ᵀ, and Υ = {X : rank (X ᵀX ) = d,xi ∈Θ, i= 1, . . . ,m}. It is known that if X ∈Υ,

the OLS estimator of β is β̂ = (X ᵀX )−1X ᵀY . Moreover, Var(β̂) = σ2(X ᵀX )−1 and Var(xᵀβ̂) =

σ2xᵀ(X ᵀX )−1x. The D-optimality and the G-optimality are related to the two variances, respectively.
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A design X∗ is said to be D-optimal if

X∗ = arg max
X∈Υ

det (X ᵀX ) .

The D-optimal design aims to minimize the volume of confidence ellipsoid for β given a fixed

confidence level under the assumption that the errors are normally distributed.

A design X∗ is said to be G-optimal if

X∗ = arg min
X∈Υ

{
max
x∈Θ

xᵀ(X ᵀX )−1x
}
.

The G-optimal design aims to minimize the maximum variance of the fitted response over the

design region.

Theorem 7 is an application of the general equivalence theory; see, e.g., Silvey (1980, Chapter 3)

for a careful discussion on this subject. Some concepts need to be introduced before the proof.

The first concept is the continuous design, also called approximate design. Suppose that we relax

the constraint that the number of samples at each design point must be an integer, that is, we

can allocate any portion of a given total sample size m to any point in Θ. Formally speaking, the

allocation can be described by a probability distribution ψ on Θ, which can be either continuous

or discrete. Let X be a random vector with distribution ψ, and define M(ψ) := Eψ(XXᵀ). For

example, if X is an exact design which contains distinct points x1, . . . ,xn, having m1, . . . ,mn

samples, respectively, where m1 + · · ·+mn =m, then the distribution ψ for sample allocation is

defined by P(X = xi) =mi/m, i = 1, . . . , n, and thus M(ψ) = m−1X ᵀX . However, a continuous

design may not be an exact design due to the integrality constraint.

By allowing continuous designs, the D-optimal design is extended to be a distribution

ψ∗ = arg max
ψ∈Ψ

det (M(ψ)) ,

where Ψ denotes the set of all ψ such that M(ψ) is nonsingular. Notice that Ψ is also the set of all

ψ such that M(ψ) is positive definite. Likewise, the G-optimal design can be extended as follows

ψ∗ = arg min
ψ∈Ψ

{
max
x∈Θ

xᵀ(M(ψ))−1x
}
.

More generally, consider a function f of positive definite matrices. A continuous design ψ∗ is said

to be f -optimal if

ψ∗ = arg max
ψ∈Ψ

f (M(ψ)) .

For instance, the D-optimal design and the G-optimal design can be obtained by setting f(M) =

log det (M) and f(M) =−max
x∈Θ

xᵀ(M)−1x, respectively. It is easy to verify that both functions are

concave in M. The use of concavity will become clear in Lemma EC.5 below.
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At last, we introduce two kinds of derivatives. The Gâteaux derivative of f atM1 in the direction

of M2 is defined as

Gf (M1,M2) := lim
ε→0+

1

ε
[f(M1 + εM2)− f(M1)] .

We say f is differentiable at M1 if Gf (M1,M2) is well defined. The Fréchet derivative of f at M1

in the direction of M2 is defined as

Ff (M1,M2) := lim
ε→0+

1

ε
[f {(1− ε)M1 + εM2}− f(M1)] =Gf (M1,M2−M1).

We state Theorem 3.7 of Silvey (1980) as Lemma EC.5 and will apply it to prove Theorem 7.

Lemma EC.5. If f is a concave function of positive definite matrices and is differentiable at

M(ψ∗), then ψ∗ if f -optimal if and only if Ff (M(ψ∗),xx
ᵀ)≤ 0 for all x∈Θ.

Now we are ready to prove Theorem 7.

Proof of Theorem 7. Consider the continuous design ψ0 that assigns probability 1/(2d−1) at

each corner point of Θ. Since m= b(2d−1), ψ0 is indeed the exact extreme design defined in §7.1.

Hence, it suffices to prove that ψ0 is both D-optimal and G-optimal in the continuous case.

We first prove the D-optimality of ψ0. Let X0 denote the design matrix corresponding to ψ0.

Then, X0 is a 2d−1× d matrix with each row corresponding one of the 2d−1 distinct corners of Θ.

For example, if d= 3,

X0 =

 1 l2 l3
1 l2 u3

1 u2 l3
1 u2 u3

 .

It is easy to see that M(ψ0) = 1
2d−1X ᵀ0X0. In the sequel, we verify the conditions of Lemma EC.5

for f = log det to prove the D-optimality.

The concavity of f is trivial; see, e.g., Theorem 7.6.6 of Horn and Johnson (2013). For the

differentiability, notice that for any positive definite matrix M1,

log det(M1 + εM2)− log det(M1) = log det(I + εM−1
1 M2) =

d∑
w=1

log(1 + ελw),

where I is the d× d identity matrix and λ1, . . . , λd are the eigenvalues of M−1
1 M2 which are all

real (Horn and Johnson 2013, Corollary 7.6.2). Hence,

Gf (M1,M2) = lim
ε→0+

1

ε
[log det(M1 + εM2)− log det(M1)] =

d∑
w=1

λw = tr(M−1
1 M2),

is well defined, so f is differentiable at M1.

Moreover,

Ff (M1,M2) =Gf (M1,M2−M1) = tr(M−1
1 M2−I) = tr(M−1

1 M2)− d.
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Hence, for any x∈Θ,

Ff (M(ψ0),xxᵀ) = tr(M(ψ0)−1xxᵀ)− d= tr(xᵀM(ψ0)−1x)− d=xᵀM(ψ0)−1x− d.

Since M(ψ0)−1 is positive definite, Ff (M(ψ0),xxᵀ) is convex in x, thereby achieving its maximum

only if x is one of the corners of Θ, i.e., x∈ S0. Therefore, to verify Ff (M(ψ0),xxᵀ)≤ 0, it suffices

to show that

xᵀM(ψ0)−1x= d, x∈ S0. (EC.40)

We denote X0 := (1,Z0), (1,v2, . . . ,vd), where 1 is the 2d−1× 1 vector of ones. Following the

standard matrix calculations similar to those in the proof of Theorem 6, we can have that, for any

x= (1,zᵀ)ᵀ, where z := (z2, . . . , zd)
ᵀ ∈Rd−1,

xᵀM(ψ0)−1x= 2d−1xᵀ(X ᵀ0X0)−1x= 2d−1
[
(z− s)ᵀ {(Z0−1sᵀ)

ᵀ
(Z0−1sᵀ)}−1

(z− s) + 1/
(
2d−1

)]
,

(EC.41)

where s= (s2, . . . , sd)
ᵀ :=

(
l2+u2

2
, . . . , ld+ud

2

)ᵀ
. Notice that (Z0−1sᵀ)

ᵀ
(Z0−1sᵀ) is a (d− 1)× (d− 1)

matrix whose (w− 1, q− 1)-th element is (vw−1sw)ᵀ(vq −1sq), for w,q= 2, . . . , d, and that

(vw−1sw)ᵀ(vq −1sq) =

{
0, if w 6= q,

2d−1
(
uw−lw

2

)2
, if w= q.

Hence,

(Z0−1sᵀ)
ᵀ
(Z0−1sᵀ) = 2d−1Diag

{(
u2− l2

2

)2

, . . . ,

(
ud− ld

2

)2
}
,

and thus

{(Z0−1sᵀ)
ᵀ
(Z0−1sᵀ)}−1

=
1

2d−1
Diag

{(
2

u2− l2

)2

, . . . ,

(
2

ud− ld

)2
}
.

Moreover, for any x∈ S0, z ∈ {l2, u2}× · · ·×{ld, ud}. Hence, (zw− sw)2 =
(
uw−lw

2

)2
, for w= 2, . . . , d.

Then,

(z− s)ᵀ {(Z0−1sᵀ)
ᵀ
(Z0−1sᵀ)}−1

(z− s) =
1

2d−1

d∑
w=2

(
2

uw− lw

)2

(zw− sw)2 =
d− 1

2d−1
. (EC.42)

Then, (EC.40) follows immediately from (EC.41) and (EC.42), proving the D-optimality by Lemma

EC.5.

The G-optimality of ψ0 can be proved similarly, by taking f(M(ψ)) =−max
x∈Θ

xᵀ(M(ψ))−1x. Or,

we can conclude this immediately by applying the known equivalence between the D-optimality

and the G-optimality for continuous designs established in Kiefer and Wolfowitz (1960); see also

Silvey (1980, §3.11). �
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