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Abstract. We consider a problem of ranking and selection via simulation in the context of
personalized decision making, in which the best alternative is not universal, but varies as a
function of some observable covariates. The goal of ranking and selection with covariates
(R&S-C) is to use simulation samples to obtain a selection policy that specifies the best
alternative with a certain statistical guarantee for subsequent individuals upon observing
their covariates. A linear model is proposed to capture the relationship between the mean
performance of an alternative and the covariates. Under the indifference-zone formulation,
we develop two-stage procedures for both homoscedastic and heteroscedastic simulation
errors, respectively, and prove their statistical validity in terms of average probability of
correct selection. We also generalize the well-known slippage configuration and prove that
the generalized slippage configuration is the least favorable configuration for our proce-
dures. Extensive numerical experiments are conducted to investigate theperformance of the
proposed procedures, the experimental design issue, and the robustness to the linearity
assumption.Finally,wedemonstrate theusefulnessofR&S-Cviaacasestudyof selecting the
best treatment regimen in the prevention of esophageal cancer. We find that by leveraging
disease-related personal information, R&S-C can substantially improve patients’ ex-
pected quality-adjusted life years by providing a patient-specific treatment regimen.
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1. Introduction
Ranking and selection (R&S) is one of the most
studied problems in the area of stochastic simulation.
It aims to select the one with the best mean perfor-
mance from a set of alternatives through running
simulation experiments; see Kim and Nelson (2006)
and Chen et al. (2015) for reviews. In the conventional
R&S setting, the mean performance of an alternative
is considered as a constant. In context of personalized
decision making, however, such a setting may be too
rigid. For instance, medical studies show that the
effectiveness of a cancer chemotherapy treatment
depends on the biometric characteristics of a patient,
such as tumor biomarker and gene expression (Yap
et al. 2009, Kim et al. 2011). Therefore, for two pa-
tientswith different characteristics, the best treatment

regimen may be different. Similar examples can also
be found in marketing, in which research shows that the
effect of an online advertisement depends on customer
purchasingpreference (Arora et al. 2008), and in training
self-driving cars, in which the best driving decision de-
pendsonthereal-timeambientinformationcollectedbyall
the sensors (Katrakazas et al. 2015). In all these ex-
amples, it appears more reasonable to consider the
mean performance of an alternative as a function of
the covariates, which include all of the additional
contextual information, such as the biometric char-
acteristics in the cancer treatment example, pur-
chasing preference in the marketing example, and
ambient information in the self-driving car example.
One approach to solving the problem is to run

conventional R&S procedures once the covariates
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are observed. However, this approach may be im-
practical in many situations for two reasons. First, the
decision maker may not have the access or the time to
run the simulation model. In the cancer treatment
example, the simulation model often involves a com-
plexMarkov chain, and one needs to simulate its steady
state in order to estimate the treatment effects. It is well
known that steady-state simulation is computationally
expensive as it may take a long time for the Markov
chain to reach the steady state. (The brute force simu-
lation that is based on a simplifiedMarkov chainmodel
and a grid-based interpolation to compute the policy for
assigning personalized treatment regimens took about
eight days on our desktop computer to finish; see
Section 8 for details.) In addition, the doctor may not
have access to the simulation model that needs to be
run on sophisticated computer systems. In the mar-
keting example, the online retailer has to display the
advertisement once the customer is logged in and,
thus, has no time to run simulation experiments. In
the self-driving car example, the time is more pre-
cious, and decisions have to be made in real time. A
second reason is about efficiency. Personalized de-
cisions typically need to be made repeatedly for
different people upon observing their covariates. Then,
running conventional R&Sprocedures for each person
is conceivably less efficient than developing a selec-
tion policy, which maps the covariates to the identity
of the best alternative, and using it repeatedly for
different people.

We note that we are interested in the kind of sit-
uations in which the simulation model is expensive to
run. Unless the covariates are of a low dimension, it
would be computationally prohibitive to discretize
the domain space of the covariates into a grid and then
simulate the alternatives at each grid point in a brute
force manner. Instead, an intelligent design is needed
to allocate a computational budget both to the al-
ternatives and over the domain space of the cova-
riates. This is also a critical issue that differentiates
this newproblem from the conventional R&S problem,
which is only concerned with allocating a computa-
tional budget to the alternatives.

In this paper, we consider a new R&S setting in
which the mean performances of all alternatives are
functions of the covariates, and therefore, the identity
of the best alternative is also a function of the cova-
riates. One may run simulation experiments to learn
the mean performance functions of all alternatives
and to use these learned functions to select the best
alternative upon observing the covariates.We call this
problem ranking and selection with covariates (R&S-C).
Notice that, under this setting, the time-consuming
component is the learning of the mean performance
functions of all alternatives, and it requires a signif-
icant amount of simulation effort. However, this can

be done off-line. Once the mean performance func-
tions are learned, only these learned functions (which
form the selection policy) need to be deployed. Then,
the selection of the best upon observing the covariates
is basically computing the function values of all al-
ternatives at the values of the covariates, and it can be
done online in real time with negligible computation.
Notice that such an off-line learning online applica-
tion approach allows the learned functions to be
deployed tomany users (e.g., doctors and self-driving
cars) and used repeatedly with no additional cost.

1.1. Main Contributions
To tackle the R&S-C problem, we first provide a
general frequentist formulation. We generalize im-
portant frequentist R&S concepts, such as the indif-
ference zone and the probability of correct selection
(PCS), to the R&S-C setting and define the corre-
sponding finite-sample statistical guarantee. We also
show that the R&S-C formulation, in general, gives a
better outcome than the R&S formulation if one
chooses to average the effects of the covariates.
Second, we consider a specific situation of the R&S-C

problem, in which the mean performances of all al-
ternatives are linear in the covariates (or linear in
certain basis functions of the covariates) with un-
known coefficients that may be estimated through
linear regression, and show that Stein’s lemma (Stein
1945), which is amajor cornerstone of the conventional
frequentist R&S, may be extended to linear regression
contexts. Despite its simplicity, linear models have
distinct advantages in terms of their interpretability and
robustness to model misspecification and often show
good performance in prediction (James et al. 2013).
Third, we propose two-stage procedures to solve

R&S-C problems with linear performance functions.
These procedures may be viewed as the extensions of
the famous Rinott’s procedure (Rinott 1978) in the
conventional frequentist R&S, and they can handle
both homoscedastic and heteroscedastic errors, re-
spectively, in the linear models. Based on the ex-
tended Stein’s lemma that we develop, we prove that
these procedures deliver the desired finite-sample sta-
tistical guarantee. We also conduct numerical studies to
assess the performances of the procedures and discuss
their robustness to the linearity assumption and to the
experimental design.
Finally, we consider the personalized prevention

regimen for esophageal cancer, in which the effec-
tiveness of the prevention regimens are evaluated
using a Markov simulation model developed and
calibrated by domain experts in cancer research. We
compare the R&S-C formulation with the conven-
tional R&S formulation and show that the R&S-C
formulation can significantly improve the expected
quality-adjusted life years (QALYs) of patients who
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are diagnosed with Barrett’s esophagus (BE), a mild
precursor to esophageal cancer.

1.2. Related Literature
R&S has been studied extensively in the statistics and
stochastic simulation literature. In general, there are
two streams of procedures: frequentist and Bayesian.
Frequentist procedures typically aim to deliver the
PCS under the indifference-zone formulation. There
are two-stage procedures (Rinott 1978), sequential
procedures (Kim and Nelson 2001, Hong 2006), and
procedures designed to handle a large number of
alternatives in parallel computing environments
(Luo et al. 2015, Ni et al. 2017). These procedures are
typically conservative and require more samples than
necessary for average cases. Bayesian procedures, on
the other hand, often aim to allocate a finite com-
putational budget to different alternatives to either
maximize the posterior PCS orminimize the expected
opportunity cost. There are a variety of approaches
to developing Bayesian procedures, including value
of information (Chick and Inoue 2001), knowledge
gradient (Frazier et al. 2008), optimal computing
budget allocation (Chen et al. 1997), and economics of
selection procedures (Chick and Gans 2009, Chick
and Frazier 2012). Bayesian procedures often require
fewer samples than frequentist ones to achieve the
same level of PCS. However, they do not provide
a (frequentist) statistical guarantee in general. Frazier
(2014) develops a Bayes-inspired procedure that in-
cludes many of the Bayesian features while still
guaranteeing a frequentist PCS.

The R&S-C problems have been tackled in the
Bayesian framework. Hu and Ludkovski (2017) pro-
pose to model the performance functions of alterna-
tives as Gaussian random fields and use the expected
improvement criteria to develop Bayesian proce-
dures. Pearce and Branke (2017) follow the same
framework of Hu and Ludkovski (2017) but focus on
how to efficiently estimate the expected improvement
over a continuous domain. These Bayesian proce-
dures for R&S-C aim to adaptively allocate a given
sampling budget to the alternatives and over the
domain of covariates in an efficient way. However, a
statistical guarantee on the performance of their so-
lutions is yet to be proved. In contrast to their ap-
proaches, we take a frequentist perspective in this
paper, for the first time to our knowledge, to model
and solve the R&S-C problems, and it aims to
achieve a certain finite-sample statistical guarantee
on the performance of the solution.

Our research is also related to the literature on the
multiarm bandit (MAB) with covariates. MAB is an
important class of sequential decision-making prob-
lems in the fields of operations research, statis-
tics, and machine learning. It was first proposed by

Robbins (1952) and has been studied extensively since
then; see, for instance, Bubeck and Cesa-Bianchi (2012)
for a comprehensive review of MAB. In recent years,
MABwith covariates (also known as contextualMAB)
has drawn considerable attention as a tool for per-
sonalized decision making. The mean performances
in these problems are often modeled as linear func-
tions of the covariates (Auer 2002, Rusmevichientong
and Tsitsiklis 2010). In particular, Goldenshluger and
Zeevi (2013) consider a linear model whose coeffi-
cients are arm-dependent, which motivates our for-
mulation of R&S-C. Nonparametric models have also
been considered in the literature of MAB with cova-
riates (Perchet and Rigollet 2013, Slivkins 2014), and
this may be a direction of future study for R&S-C.
However, a critical distinction between MAB with
covariates and R&S-C lies in the way that the cova-
riates are obtained. The values of the covariates arrive
randomly in the former,whereas in the latter, they can
be chosen by the decision maker. The additional
freedom may conceivably allow one to learn the re-
lationship between the mean performance and the
covariates more efficiently.
Linear models have also been considered in R&S

problems. For example, Negoescu et al. (2011) adopt a
linear model when solving an R&S problem in the
context of drug discovery, in which the mean per-
formance of an alternative is a linear combination of
attribute contributions. However, the intention of
introducing the linear model in Negoescu et al. (2011)
is quite different from ours. Specifically, the linear
model in their work forms a linear projection from the
space of alternatives to the space of attributes, which
dramatically reduce the computational complexity.
Their final goal is still to select the best alternative as a
static decision rather than the kind of decision policy
that we seek. Therefore, their R&S problem is still in
the conventional sense, which is different from the
R&S-C problems considered in this paper.
A preliminary version of this paper (Shen et al.

2017) was published in the Proceedings of the 2017
Winter Simulation Conference. This paper extends
Shen et al. (2017) significantly by providing all the
proofs for statistical validity and the least favorable
configuration, discussing the experimental design
and robustness to linearity assumptions, adding the
discussions on nonnormal simulation errors, and
applying the proposed formulation and procedure
to a case study on personalized medicine.
The remainder of the paper is organized as follows.

In Sections 2 and 3, we formulate the R&S-C problem
and introduce the linear models. In Section 4, we
develop procedures for homoscedastic, heteroscedastic,
and nonnormal simulation errors. The least favorable
configuration is discussed in Section 5, followed by
numerical experiments in Section 6 and a robustness

1502
Shen, Hong, and Zhang: Ranking and Selection with Covariates

INFORMS Journal on Computing, 2021, vol. 33, no. 4, pp. 1500–1519, © 2021 INFORMS



study in Section 7.We demonstrate the practical value
of R&S-C in the context of personalized medicine in
Section 8 and conclude in Section 9. Technical proofs
are included in the e-companion of this paper.

2. Problem Formulation
Suppose there are k alternatives whose mean per-
formances, denoted as μ1(X), . . . , μk(X), are functions
of X � (X1, . . . ,Xd)T , which is the vector of the ob-
servable random covariates with support Θ ⊂ Rd.
Our goal is to develop a policy that selects the al-
ternative with the largest mean performance upon
observing the values of the covariates, that is, identi-
fying i∗(x) :� arg max1≤i≤k{μi(X)|X � x} for any x �
(x1, . . . ,xd)T ∈Θ. In the cancer treatment example con-
sidered in Section 1, for instance, the alternatives are
the different treatments, the covariates are the bio-
metric characteristics of a patient, the mean perfor-
mances are the expected QALYs of the patient under
different treatments, and the goal is to identify a
policy that selects the best treatment for the patient
once the biometric characteristics of the patient
are observed.

In this paper, we suppose that there are simulation
models that allow us to estimate μ1(X), . . . , μk(X) once
the values ofX are given. The critical issue here is how
to design off-line simulation experiments to learn
μ1(x), . . . , μk(x) accurately so that they may be used to
select the best alternative in real time with a pre-
determined level of precision upon observing the
values of X (e.g., PCS in a frequentist sense). We call
this problem R&S-C to emphasize that the decision is
conditional on the covariates.

Remark 1. Throughout this paper, we assume that the
value of X is observable before making the selection
decision. This assumption is reasonable in many prac-
tical situations, including the three examples intro-
duced in Section 1. Specifically, in the cancer treat-
ment example, patients’ characteristics, such as tumor
biomarkers and gene expressions, can be identified
through medical tests; in the marketing example,
customer preference can be inferred from the demo-
graphic and behavioral information as well as the
purchasing history (if available); and in the self-driving
car example, the ambient information is collected di-
rectly by the sensors.

2.1. Value of Covariates
In the conventional R&S problem, the goal may be
viewed as selecting the unconditional best, that is,
to identify i † :� arg max1≤i≤k μi, where μi :� E[μi(X)],
i � 1, . . . , k, and the expectation is taken with respect
to the distribution of X. In the cancer treatment ex-
ample, for instance, the conventional R&S selects the
best treatment for the entire population instead of

the best for an individual patient. Notice that μi(X)
is a random variable. Then, by Jensen’s inequality,

E μi∗ X( ) X( )
[ ]

� E max
1≤i≤k

μi X( )
[ ]

≥ max
1≤i≤k

E μi X( )[ ]
� E μi† X( )[ ]

. (1)
Therefore, the R&S-C formulation typically out-
performs the conventional R&S formulation if the
covariates are observable before the selection deci-
sion is made. In the cancer treatment example, for
instance, Equation (1) implies that the personalized-
best treatment typically outperforms the population-
best treatment. This point is also demonstrated in the
cancer prevention example considered in Section 8.

Remark 2. The distribution of X is assumed to be
known in this paper. This is a common assumption in
conventional R&S, in which the distribution of X needs
to be known to evaluate E[μi(X)] for all i � 1, . . . , k.
Here, the distribution can be discrete, continuous, or
even a mixture of them. Moreover, the elements of X
can be dependent on each other. In practice, the dis-
tribution of X is typically estimated through the input
modeling process (Law and Kelton 2000).

2.2. Indifference Zone
The concept of an indifference zone (IZ) plays a
key role in conventional frequentist R&S (Bechhofer
1954). It defines the smallest difference δ that the
decision maker considers worth detecting. Therefore,
alternativeswhosemean performances arewithin δ to
the best are in the IZ and are considered “indifferent”
from the best. In a frequentist setting, R&S procedures
need to deliver the PCS under any configuration of the
means. Without the IZ, the best and the other alter-
natives may be arbitrarily close in their means. One
would then need infinitely many samples to identify
the true best even with PCS less than one. In the
presence of the IZ, the goal is to select one of the

Figure 1. (Color online) Example of Mean Configuration
with d � 1 and k � 3
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alternatives in the IZ, and therefore, a finite number of
samples are needed to ensure that the selected al-
ternative is in the IZ with PCS less than one.

In the setting of R&S-C, the configurations of
the means depend on the values of the covariates.
They may be arbitrarily close if the mean surfaces
μ1(x), . . . , μk(x) intersect at some values of x ∈ Θ (see,
for instance, Figure 1). Therefore, we also need IZ.
Given an IZ parameter, we define the event of correct
selection (CS) given X � x as

CS x( ) :� μi∗ x( ) x( ) − μ
î∗ x( ) x( ) < δ

{ }
,

where î∗(x) denotes the selected best, and a CS event
implies that the selected best is in the IZ. Notice that
our definition of a CS event is also known as a good
selection event in some of the R&S literature (see, for
instance, Ni et al. 2017), where a CS event may be
defined more restrictively as {i ∗(x) � î ∗(x)} given that
there are no alternatives in the IZ other than the best.
However, this more restrictive definition of CS often
does not make sense in the context of R&S-C. For
instance, when the support of the covariates cover the
intersection points of the mean surfaces (see point x∗
in Figure 1), nomatter how small the IZ parameter δ is,
for certain values of the covariates that are in the neigh-
borhood of the intersection points, there are always al-
ternatives in the IZ other than the best, which makes the
more restrictive definition of CS inapplicable.

Remark 3. Recently, Fan et al. (2016) show that IZ may
be unnecessary for the conventional frequentist R&S
if sequential procedures are used. However, in order
for their procedures to stop in finite time (with finite
samples), the means of all alternatives have to be dif-
ferent. In the R&S-C context, however, the mean values
of some alternatives are the same at the intersection
points (see Figure 1). Therefore, it is not clear how the
procedures of Fan et al. (2016) may be applied in the
R&S-C context.

2.3. Probability of Correct Selection
We are now ready to define the PCS, which is the
statistical guarantee that frequentist R&S procedures
typically deliver. Let î ∗(x) denote the selection policy
produced by an R&S-C procedure. Notice that the
presence of the covariates complicates the definition
of PCS because one has to answer whether the PCS is
defined for an individual or the population. To ad-
dress the issue, we first define the conditional PCS,
given X � x, as

PCS x( ) :� P μi∗ X( ) X( ) − μ
î∗ X( ) X( ) < δ

⃒⃒⃒
X � x

{ }
, (2)

where the probability is taken with respect to the distri-
bution of simulated samples that are used to estimate the

mean functions μ1(x), . . . , μk(x) and to derive the se-
lection policy î ∗(x) for all x ∈ Θ.
Notice that PCS(x) may be viewed as the PCS for

an individual whose covariates take the value x.
However, the covariates are random variables, and
therefore, PCS(X) is also a random variable. To use
it as the statistical guarantee for R&S-C procedures,
one way is to consider some summary statistics of
PCS(X). To that end,wedefine theaveragePCS,denoted
by PCSE, as

PCSE :� E PCS X( )[ ]. (3)
Notice that

PCSE � E P μi∗ X( ) X( ) − μ
î∗ X( ) X( ) < δ

⃒⃒
X

{ }[ ]
� P μi∗ X( ) X( ) − μ

î∗ X( ) X( ) < δ
{ }

.

Therefore, PCSE is the unconditional PCS, and it is for
the entire population. If we set PCSE ≥ 1 − α, we are
(1 − α) confident that a random individual from the
population will select the individual’s personalized
best decision or a decision that is within the IZ. We
want to point out that other summary statistics of
PCS(X) may also be used as decision criteria, for in-
stance, one may define it to be a certain quantile of
the random variable PCS(X) or even minx∈Θ PCS(x)
to be more risk averse. The minx∈Θ PCS(x) statistic
focuses on the worst PCS(x) over Θ, a much more
conservative criterion compared with PCSE, whereas
quantile of PCS(X) is a more flexible statistic, whose
conservativeness can be adjusted by the quan-
tile parameter.
Now, we summarize our problem. We want to

design a selection procedure that samples each al-
ternative off-line to estimate the mean functions
μ1(x), . . . , μk(x) and then produce the selection pol-
icy î∗(x) for all x ∈ Θ. This policy is used to select
the best alternative in real time upon observing the
values ofX, and it should reach the prespecified target
of PCSE, say, 1 − α.

Remark 4. We focus on PCSE in the main text of this
paper. Selection procedures can be developed and
analyzed analogously if the prespecified target is
PCSmin :� minx∈Θ PCS(x) ≥ 1 − α. Detailed discussion
including numerical experiments is provided in Sec-
tion EC.6 of the e-companion.

3. Linear Models and the Extended
Stein’s Lemma

Notice that the general formulation of R&S-C prob-
lems, presented in Section 2, allows the mean per-
formance functions μ1(x), . . . , μk(x) to take any forms.
To solve the problems, however, one needs to decide
how to estimate these functions. There are twoapproaches:
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parametric and nonparametric. Both have pros and
cons, and both are widely used in function estimation.
In this paper, we take a parametric approach and as-
sume that μ1(x), . . . , μk(x) are linear functions of the
covariates x with unknown coefficients that need to
be estimated through simulation experiments. Let
Yi(x)denote the random performance of alternative i
at the covariates x for all i � 1, . . . , k and x ∈ Θ. We
make the following assumption on the forms of
μ1(x), . . . , μk(x) and distributions of Y1(x), . . . ,Yk(x).
Assumption 1. For all i � 1, . . . , k,

μi x( ) � xTβi,

Yi x( ) � μi x( ) + εi,

where βi � (βi1, . . . , βid)T ∈ Rd is a vector of unknown
coefficients and the simulation error εi follows a normal
distribution with mean zero and variance σ2i < ∞. In ad-
dition, the simulation errors are independent among
different alternatives, different covariates, and different
replications.

The linear model in Assumption 1 is crucial for
analyzing the performance in terms of PCSE of the
proposed selection procedures. In particular, with-
out the linear structure, it would be challenging to
obtain a finite-sample performance guarantee even
with the normality assumption on the simulation
errors. Under a nonparametric model, such as kernel
regression and tree-based methods, selection proce-
dures as well as the analysis of their statistical per-
formance would be drastically different from what
is done in this paper. We leave the investigation to
future research.

Despite the simplicity, linear models usually have
the advantages of high interpretability and robust-
ness to model misspecification (James et al. 2013). We
study in Section 7 the robustness of the procedures
developed in this paper when the linearity assump-
tion does not hold.

Remark 5. The linear model in Assumption 1 can be
generalized to capture the nonlinearity of μi(x) in x by
the use of basis functions. That is, we may postulate
μi(x) � f (x)Tβi, where f (x) is a vector of basis functions
(e.g., polynomials or radial basis functions) that one
selects carefully. (Nevertheless, selecting a good set
of basis functions is a nontrivial task, and it is beyond
the scope of this paper.) Note that, if we view f (x) as a
new set of covariates through a change of variables,
Assumption 1 and the analysis in the sequel still
hold. Moreover, we often set X1 ≡ 1 to allow an
intercept term in the linear model. We may also
include categorical variables in x by the use of
dummy variables.

Notice that Assumption 1 basically requires all
Yi(x) to follow the standard linear regression as-
sumption (James et al. 2013) so that the unknown
coefficient vectors βi may be estimated using a stan-
dard ordinary least squares (OLS) method. Further-
more, Assumption 1 is a natural extension of the
normality assumption commonly used in the R&S
literature. For instance, both Rinott (1978) and Kim
and Nelson (2001) assume that Yi � μi + εi for all
i � 1, . . . , k. We basically extend themean μi to a linear
function μi(x) � xTβi to add the effect of the covariates.
Moreover, we see later in this section that the OLS
estimators of the unknown parameters βi under As-
sumption 1 resemble the sample-mean estimators of
the unknownmeans under the normality assumption.
This resemblance gives us great convenience to de-
velop statistically valid R&S-C procedures.

3.1. Fixed Design
Based on Assumption 1, a critical issue in solving an
R&S-C problem is to obtain estimates of β1, . . . ,βk that
are accurate enough. Therefore, we need to decide
when to run simulation experiments (i.e., the design
points) and how many observations to run (i.e., the
sample sizes). Here, we want to emphasize again that
estimation of βi is conducted off-line based on sim-
ulation experiments at the chosen design points in-
stead of real experiments at randomly observed
values of the covariates. Hence, we are free in choos-
ing the number of design points, their locations, and
the number of samples to be taken at each design
point. This naturally becomes an experimental design
problem, which could be formulated as an optimiza-
tion problem with the objective of minimizing cer-
tain metrics of the error in estimating the policy
i∗(·) � arg max1≤i≤k μi(·). However, thisproblemismuch
more challenging to solve than the experimental de-
sign problem for linear regression (Silvey 1980), pri-
marily because the arg max operation is nonlinear in
the unknown surfaces. It is beyond the scope of this
paper to find both the optimal design and the optimal
sample size that jointly provide a guarantee on the
PCS of the estimated policy î∗(·).
In this paper, we choose to use a fixed set of design

points to estimate βi for all i � 1, . . . , k. In particular,
we select a set of m design points, denoted as x1, . . . ,
xm ∈ Θ, with m ≥ d, and conduct simulation experi-
ments only at these design points for all alternatives.
Notice that the use of fixed design points eliminates
the randomness in choosing design points. It sim-
plifies the analysis and makes statistically valid
R&S-C procedures significantly easier to develop.
When adopting a fixed design, the placement of the
design points is an important issue. We discuss it in
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Section 7 under the premise that the number of design
points is given. As for now, we simply consider the
situation in which m design points are chosen, and
they satisfy that X TX is a nonsingular matrix, in
which X � (x1, . . . , xm)T ∈ Rm×d. Notice that the non-
singularity of X TX is a standard condition in linear
regression (James et al. 2013). It ensures that all βi may
be estimated properly.

3.2. Extended Stein’s Lemma
Conventional R&S procedures often have a first stage
to estimate the means and variances of all alterna-
tives and use them to determine the remaining sam-
ple sizes (or sampling policy). For instance, the two-
stage procedures of Dudewicz and Dalal (1975) and
Rinott (1978) and the sequential procedures of Kim
and Nelson (2001) and Hong (2006) use the sample
variances, and the optimal computing budget allo-
cation procedure of Chen et al. (1997) uses both the
sample means and variances. However, this may
create a statistical issue because the overall sample
size of an alternative now depends on its first-stage
samples. Then, what is the distribution of the overall
sample mean?

Stein’s lemma (Stein 1945) critically answers this
question. The lemma shows that, if Y1,Y2, . . . are in-
dependent and identically distributed (i.i.d.) normal
random variables and N depends on the first-stage
samples only through the sample variance, then the
overall sample mean (Y1 + · · · + YN)/N, conditionally
on the first-stage sample variance, still has a normal
distribution. Consequently, this lemma became a
cornerstone of the conventional frequentist R&S pro-
cedures in proving finite-sample statistical guaran-
tees with unknown variances; see Dudewicz and
Dalal (1975) and Rinott (1978) for early use of this
lemma in designing two-stage R&S procedures, and
theorem 2 of Kim and Nelson (2006) for a rephrased
version of the lemma.

In R&S-C, we also face the problem of unknown
variances, that is, σ21, . . . , σ

2
k are unknown in the linear

models. Moreover, we have to deal with the OLS
estimators β̂i instead of only the sample means as in
the conventional R&S. Suppose that we have m ≥ d
design points with the design matrix X and each
sample includes an observation from every design
point. Then, we have the following extended Stein’s
lemma. We provide its proof in Section EC.1 of the
e-companion, in which a more general version is
stated and proved, but we remark here that the as-
sumption of the linear models is crucial.

Lemma 1 (Extended Stein’s Lemma). Let Y � Xβ + ϵ,
where β ∈ Rd, X ∈ Rm×d, and ϵ ∼ N (0, σ2I) with 0
denoting the zero vector in Rm and I the identity matrix in
Rm×m. Assume that X TX is nonsingular. Let T be a random
variable independent of

∑n
��1 Y� and of {Y� : � ≥ n + 1},

where Y1,Y2, . . . are independent samples of Y. Suppose
that N ≥ n is an integer-valued function of T and no other
random variables. Let β̂ � N−1(X TX )−1X T ∑N

��1 Y�. Then,
for any x ∈ Rd,
i. xT β̂|T∼N (xTβ, σ

2

N xT(X TX )−1x).
ii.

̅̅̅
N

√ (xT β̂ − xTβ)
σ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
xT(X TX )−1x√ is independent of T and has the

standard normal distribution.

Remark 6. If we set m � d � 1 and X � 1, Y becomes a
scalar, and it followsN (β1, σ2). Then, Lemma 1 becomes
Stein’s lemma (Stein 1945). In this sense, Lemma 1 is
an extension of Stein’s lemma to the linear regres-
sion context.

Remark 7. In Lemma 1, if we let T denote the OLS
estimator of the variance σ2 computed using samples
Y1, . . . ,Yn, then, by Rencher and Schaalje (2008, theo-
rem 7.6b), (nm − d)T/σ2 follows a chi-square distribu-
tion with (nm − d) degrees of freedom, and it is inde-
pendent of

∑n
��1 Y� and of {Y� : � ≥ n + 1}. Therefore,

similar to the conventional frequentist R&S, we may let
the sample sizes of all alternatives depend on their first-
stage OLS variance estimators and still keep the desired
statistical properties.

4. Two-Stage Procedures
For conventional frequentist R&S procedures, there
are two-stage and sequential procedures. Even though
both types of procedure are designedbased on the least
favorable configuration of means, sequential proce-
dures, such as those of Kim and Nelson (2001) and
Hong (2006), take advantage of the information on
means and allow the procedures to terminate earlier if
the differences between the best and rest of the al-
ternatives are significantly larger than the IZ pa-
rameter. On the other hand, two-stage procedures,
such as those of Dudewicz and Dalal (1975) and
Rinott (1978), do not take the mean information into
consideration and are, thus, often more conservative.
In R&S-C problems, however, the configurations of

the means depend on the realizations of the cova-
riates. For some realizations of the covariates, the
differences may be larger than the IZ parameter, and
for other realizations, the differences may be much
smaller, even close to zero (see, for instance, Figure 1).
The procedures that we intend to design need to
deliver a selection policy î∗(x) for all x ∈ Θ before the
covariates are realized, and the policy may be used
repeatedly for many realizations of the covariates.
Therefore, it is not clear whether sequential proce-
duresmay still be advantageous in the R&S-C context.
In this paper, we focus on designing two-stage pro-
cedures that deliver the desired finite-sample statis-
tical guarantee.
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4.1. The Procedure and Statistical Validity
We develop a two-stage procedure, called procedure
TS, for R&S-C problems under Assumption 1. In the
first stage, the procedure takes a small number of
samples from all design points to estimate the total
sample size required to deliver the desired statistical
guarantee, and in the second stage, it takes the ad-
ditional samples and produces a selection policy
based on all samples. The structure of the procedure
resembles many of the conventional two-stage R&S
procedures, including those of Dudewicz and Dalal
(1975) and Rinott (1978).

Procedure TS
Setup: Specify the target PCSE 1 − α, the IZ pa-

rameter δ > 0, the first-stage sample size n0 ≥ 2, the
number of design pointsm ≥ d, and the design matrix
X with a nonsingular X TX . Let h satisfy the follow-
ing equation:

E

{∫ ∞

0

[∫ ∞

0
Φ

h̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n0m−d( ) t−1+s−1( )XT X TX( )−1X√( )

× η s( )ds
]k−1

η t( )dt
}
� 1−α,

(4)

where Φ(·) is the cumulative distribution function
(cdf) of the standard normal distribution, η(·) is the
probability density function (pdf) of the chi-square
distribution with (n0m − d) degrees of freedom, and
the expectation is taken with respect to the distri-
bution of X.

First-stage sampling: Take n0 independent sam-
ples from each alternative i at each design point xj
through simulation and denote them by Y i��(Yi�(x1),. . .,
Yi�(xm))T , i � 1, . . . , k, and � � 1, . . . ,n0. For each i �
1, . . . , k, let

β̂i0 �
1
n0

X TX( )−1X T
∑n0
��1

Y i�,

S2i �
1

n0m − d

∑n0
��1

Y i� − X β̂i0

( )T

Y i� −X β̂i0

( )
.

Second-stage sampling: Compute the total sample
size Ni � max{�h2S2i /δ2
,n0} for each i, where �a
 de-
notes the smallest integer no less than a. Take Ni − n0
additional independent samples from alternative i at
all design points through simulation, Y i,n0+1, . . . ,Y iNi ,
i � 1, . . . , k. For each alternative i, let

β̂i �
1
Ni

X TX( )−1X T
∑Ni

��1
Y i�.

Selection: Return î∗(x) � arg max1≤i≤k{xT β̂i} as the
selection policy.

Remark 8. Similar to typical two-stage R&S proce-
dures, the first-stage sample size n0 is chosen heuris-
tically here. If n0 is too small, then h calculated from (4)
tends to be large, leading to excessive second-stage
samples to compensate for the inaccurate variance
estimator S2i in the first stage. Taking n0 ≥ 10 is a
common recommendation (Kim and Nelson 2006).

Remark 9. The constant h, defined in (4), is computed
numerically. In our numerical experiments, the in-
tegrations and expectations are computed by the
MATLAB built-in numerical integration function
integral, and h is solved by the MATLAB built-in
root-finding function fzero. However, the numeri-
cal integration may suffer from the curse of di-
mensionality if the dimension of X is large. In such
situations, one may use the Monte Carlo method to
approximate the expectation or apply the stochastic
approximation method (Robbins and Monro 1951) to
find the root h. See more discussion in Section EC.2 of
the e-companion.

The following theorem states that procedure TS is
statistically valid under Assumption 1. We include
the proof in Section EC.3 of the e-companion, but
remark here that the proof relies critically on the
extended Stein’s lemma (Lemma 1).

Theorem 1. Suppose that procedure TS is used to solve
the R&S-C problem and Assumption 1 is satisfied. Then,
PCSE ≥ 1 − α.

4.2. Handling Heteroscedastic Errors
In Assumption 1, we assume that the variance of
simulated samples of an alternative does not change
with respect to the values of the covariates. This
implies that the linear models all have homoscedastic
simulation errors. However, this assumptionmay not
always hold. In many practical situations, such as
queueing and financial applications, simulation er-
rors are often heteroscedastic. In this section, we
present a two-stage R&S-C procedure to take care of
the heteroscedasticity in the linear models.
We first extend Assumption 1 to the following to

allow heteroscedastic errors.

Assumption 2. For all i � 1, . . . , k,

μi x( ) � xTβi,

Yi x( ) � μi x( ) + εi x( ),
where βi � (βi1, . . . , βid)T ∈ Rd is a vector of unknown
coefficients and the simulation error εi(x) follows a normal
distribution with mean zero and variance σ2i (x) < ∞. In
addition, the simulation errors are independent among different
alternatives, different covariates, and different replications.

When linear models have heteroscedastic errors,
OLS estimators of βi are still consistent estimators.
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However, subtle controls are needed to deliver the
required PCSE. Because our experiments are con-
trolled simulation experiments, we may run multiple
simulation runs at each design point to calculate
the sample variance at the design point. We then use
these sample variances to determine the (different)
total sample sizes at different design points. We
call this new two-stage procedure TS+. One distinct
feature of procedure TS+ is that it allows different
design points to have different total sample sizes to
handle heteroscedastic errors, and procedure TS al-
ways assigns the same total sample size to all design
points. The following is the procedure. For simplicity,
we use χ2

ν to denote the chi-square distribution with ν
degrees of freedom.

Procedure TS+

Setup: Specify the target PCSE 1 − α, the IZ pa-
rameter δ > 0, the first-stage sample size n0 ≥ 2, the
number of design pointsm ≥ d, and the design matrix
X with a nonsingular X TX . Let hHet satisfy the fol-
lowing equation:

E

{∫ ∞

0

[∫ ∞

0
Φ

hHet̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n0−1( ) t−1+s−1( )XT X TX( )−1X√( )

× γ(1) s( )ds
]k−1

γ(1) t( )dt
}
� 1−α,

(5)

where γ(1)(·) is the pdf of the smallest order statistic of
m i.i.d. χ2

n0−1 random variables, that is,

γ 1( ) t( ) � mγ t( ) 1 − Γ t( )( )m−1,

with γ(·) and Γ(·) denoting the pdf and cdf of the χ2
n0−1

distribution, respectively, and the expectation is taken
with respect to the distribution of X.

First-stage sampling: Take n0 independent samples
of each alternative i from each design point xj through
simulation and denote them by Yi�(x1), . . . ,Yi�(xm),
i � 1, . . . , k, and � � 1, . . . ,n0. For each i and j, let

Yij � 1
n0

∑n0
��1

Yi� xj
( )

and

S2ij �
1

n0 − 1

∑n0
��1

Yi� xj
( ) − Yij

( )2
.

Second-stage sampling: Compute the total sample
size Nij � max{�h2HetS

2
ij/δ

2
,n0} for each i and j. Take
Nij − n0 additional independent samples from alter-
native i at design point xj through simulation Yi,n0+1

(xj), . . . ,YiNij(xj), j � 1, . . . ,m, and i � 1, . . . , k. For each
alternative i, let

β̂i � X TX( )−1X T Ŷ i,

where Ŷ i � (Ŷi1, . . . , Ŷim)T and

Ŷij � 1
Nij

∑Nij

��1
Yi� xj

( )
.

Selection: Return î∗(x) � arg max1≤i≤k{xT β̂i} as the
selection policy.

Remark 10. The smallest order statistics in Equation (5)
are introduced to make the computation of hHet fea-
sible. Without it, the equation for computing the con-
stant hHet would involve (2m)-dimensional numerical
integration, which becomes prohibitively difficult to
solve for m ≥ 3. The price of using the smallest order
statistic is that hHet is (slightly) larger than necessary,
which introduces some conservativeness in the pro-
cedure. See Remark EC.2 in the e-companion for
more details.

The following theorem states that procedure TS+
is statistically valid under Assumption 2. Its proof,
which is included in Section EC.4 of the e-companion,
is similar to that of Theorem 1 but technically more
involved. We remark here that the proof relies criti-
cally on a more generalized extension of Stein’s
lemma (Stein 1945), which is stated and proved as
Lemma EC.1 in the e-companion.

Theorem 2. Suppose that procedure TS+ is used to solve
the R&S-C problem and Assumption 2 is satisfied. Then,
PCSE ≥ 1 − α.

Remark 11. Let NTS and NTS+ denote the expected total
sample sizes of procedure TS of procedure TS+, re-
spectively. It can be shown that NTS � O(k1+ 2

n0m−d) and
NTS+ �O(k1+ 2

n0−1) as k → ∞; meanwhile,NTS �O(α− 2
n0m−d)

andNTS+ � O(α− 2
n0−1) as α → 0. The proofs are provided

in Section EC.7 of the e-companion. It turns out that
two classical selection procedures for conventional
R&S problems—the two-stage procedure in Rinott
(1978) and the sequential procedure in Kim and
Nelson (2001)—have upper bounds on their sam-
ple sizes that are similar to those of procedure TS and
procedure TS+ (Zhong and Hong 2021, lemma 4). In
this sense, procedure TS and procedure TS+ can solve
the R&S-C problem, an extension of the conventional
R&S problem, without substantially increasing the
sample size complexity. Nevertheless, it must be
stressed that this property relies heavily on the linear
model assumption.
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4.3. Comparison Between Procedure TS and
Procedure TS+

Clearly, the assumption of homoscedasticity yieldsmore
analytical and computational tractability than the
assumption of heteroscedasticity. However, if proce-
dure TS is used in the presence of heteroscedastic er-
rors, it may fail to deliver the desired PCSE guarantee.
An intuitive explanation is that using a single vari-
ance estimate for all the design points may under-
estimate the variance at some design points, leading
to insufficient sampling effort at those design points.

On the other hand, procedure TS+ may behave in an
overly conservative manner when used in the case of
homoscedastic errors. This is because procedure TS+
requires estimation of the variances at all design
points, which amounts to estimating the common
variance repeatedly in the homoscedasticity setting,
resulting in an excessive sampling effort. To be more
specific, let us consider the estimators of the common
variance σ2i in procedure TS and procedure TS+, which
are S2i and S2ij, respectively. It is easy to see that they are
both unbiased estimators of σ2i with the former hav-
ing variance 2σ4i /(n0m − d) and the latter 2σ4i / (n0 − 1).
Because n0m − d ≥ n0d − d ≥ n0 − 1, S2ij has a larger
variance. This is not surprising as S2ij uses just
n0 samples to estimate the variance, whereas S2i uses
n0m samples. Hence, procedure TS+ requires more
second-stage samples to compensate for the less ac-
curate variance estimator. Furthermore, the use of the
order statistic in procedure TS+ further loosens the
lower bound of the PCSE and results inmore excessive
sample sizes. These behaviors are revealed clearly
through the numerical experiments in Section 6.

This discussion provides us a rule of thumb for
choosing the procedures in practice. Procedure TS
may be preferred if either the problem has approxi-
mately homoscedastic errors or the decision maker
can tolerate some underachievement relative to the
desired PCSE. On the other hand, procedure TS+ may
be a better choice if the errors are notably hetero-
scedastic or if the decision maker is stringent on
delivering the PCSE guarantee.

4.4. Handling Nonnormal Errors
We now discuss nonnormal simulation errors. We
first consider the case of homoscedasticity and relax
Assumption 1 to the following.

Assumption 3. For all i� 1, . . . ,k, μi(x) � xTβi and Yi(x) �
μi(x) + εi, where βi � (βi1, . . . , βid)T ∈ Rd is a vector of
unknown coefficients and the simulation error εi has mean
zero and variance σ2i < ∞. In addition, the simulation errors
are independent among different alternatives, different co-
variates, and different replications.

In the absence of normality, the extended Stein’s
lemma (Lemma 1) does not hold. As a consequence,
procedure TS does not provide finite-sample statis-
tical validity in terms of PCSE under Assumption 3.
Instead, we establish its statistical validity in an as-
ymptotic sense. In particular, we adopt the “small δ”
regime, that is, δ → 0. This asymptotic regime is often
used in R&S literature; see, for example, Kim and
Nelson (2006) and Luo et al. (2015).
Note that, as δ → 0, the smallest difference that the

decision maker deems worth detecting vanishes, and
the R&S-C problem becomes increasingly difficult,
requiring infinitely many samples eventually. Mean-
while, the central limit theorem suggests that the es-
timates of the linear coefficients are asymptotically
normal, which would lead to the asymptotic validity
of procedure TS. The proof of the following theorem
is given in Section EC.5 of the e-companion.

Theorem 3. Suppose that procedure TS is used to solve
the R&S-C problem and Assumption 3 is satisfied. Then,
lim infδ→0 PCSE ≥ 1 − α.

Furthermore, we relax Assumption 2 likewise and
show that procedure TS+ is statistically valid as-
ymptotically as δ → 0 as well. The proof is similar to
that of Theorem 3, so we omit the details.

Assumption 4. For all i� 1, . . . ,k, μi(x) � xTβi and Yi(x) �
μi(x) + εi(x), where βi � (βi1, . . . , βid)T ∈ Rd is a vector of
unknown coefficients and the simulation error εi(x) has
mean zero and variance σ2i (x) < ∞. In addition, the simu-
lation errors are independent among different alternatives,
different covariates, and different replications.

Theorem 4. Suppose that procedure TS+ is used to solve
the R&S-C problem and Assumption 4 is satisfied. Then,
lim infδ→0 PCSE ≥ 1 − α.

5. Least Favorable Configuration
For conventional R&S problems, the so-called least
favorable configuration (LFC) is an important concept
because it defines the most difficult configuration of
the means of the alternatives for the selection pro-
cedures (Bechhofer 1954). Indeed, many selection
procedures are designed by analyzing the LFC. If a
selection procedure can meet the target PCS under its
LFC, it can certainly meet the same target for all mean
configurations. It is well known that under the IZ
formulation, the LFC for R&S problems is the slippage
configuration (SC) for many procedures (Gupta and
Miescke 1982). The SC is a configuration in which
there exists a unique best alternative, and all other
alternatives have equal means that differ from the
best by exactly the IZ parameter.
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To better understand our proposed procedures for
R&S-C, it is important to investigate their LFCs,
formally defined as follows. For given k, distribution
of X, and σ2i (x), i � 1, . . . , k, the LFC for a R&S-C
procedure is the value of β � (βi : 1 ≤ i ≤ k) that min-
imizes the PCSE of that procedure. That is,

LFC :� argmin
β� βi :1≤i≤k( )

PCSE β
( )

,

where PCSE(β) denotes the PCSE of the procedure
under the configuration β. Note that this definition of
LFC generalizes the same notion for the conventional
R&S problem. If a selection procedure can meet the
target PCSE under its LFC, it will meet the same target
for any other configurations.

We first generalize the SC in conventional R&S
problems to the R&S-C setting and define the gener-
alized slippage configuration (GSC) as follows:

μ1 x( ) −μi x( ) � δ, for all x ∈Θ and all i � 2, . . . , k. (6)
Under the linearity assumption (Assumption 1 or 2),
the GSC becomes

xTβ1 − xTβi � δ, for all x ∈Θ and all i � 2, . . . , k. (7)
Hence, under the GSC, the best alternative is the same
for all x ∈ Θ, and all other alternatives have equal
mean performances. It is worth mentioning that the
GSC of linear mean surfaces implies the existence of
an intercept term (i.e., X1 ≡ 1). Geometrically, the
GSC means that the hyperplanes formed by the mean
performances of the inferior alternatives are identical
and parallel to the hyperplane of the best alternative,
and the vertical distance between the two hyper-
planes (i.e., the difference between the intercepts) is
exactly δ; see Figure 2 for an illustration for d � 3.

It turns out that the GSC defined in (7) is the LFC for
both procedures TS andTS+ under the IZ formulation.
We summarize this result in the following theorem.
A slightly more general result is provided and proved
in Section EC.8 of the e-companion.

Theorem 5. The GSC is the LFC for procedures TS and TS+.

Remark 12. Theorem 5 not only deepens our under-
standing of our procedures, but also helps us design
numerical experiments to serve as a stress test for the
proposed procedures.

6. Numerical Experiments
In this section, we investigate numerically the sta-
tistical validity of the two proposed procedures. We
create a number of problem instances to test the
procedures. For each problem instance, we need to
specify the number of alternatives k, the dimension
of the covariates d, the design matrix X , the mean
configuration parameters βi, the variance configura-
tion σ2i (·), and the distribution of X. Instead of spec-
ifying these aspects in a combinatorial fashion,
which would result in an excessively large number
of problem instances, we first create a benchmark
problem and then investigate the effect of a factor by
varying it while keeping the others unchanged. All
the numerical studies, including the numerical ex-
periments in this section and Section 7.2 and the case
study in Section 8, are implemented in MATLAB on a
desktop computer with Windows 10 OS, 3.60 GHz
CPU, and 16 GB RAM. The source code is available
at https://github.com/shenhaihui/rsc.
The benchmark problem is formulated as follows.

Let d � 4 and k � 5. Suppose that X � (1,X2, . . . ,Xd)T
and X2, . . . ,Xd are i.i.d. uniform[0, 1] random vari-
ables. Here, the first covariate is always one, which is
used to include the intercept terms for linear models.
We set each except the first entry of a d-dimensional
design point to be 0 or 0.5, so there arem � 2d−1 design
points in total. We set the configuration of the means
to be theGSC, that is, β11 − δ � βi1 � 0, β1w � βiw � 1 for
i � 2, . . . , k and w � 2, . . . , d, and set the simulation
errors to be homoscedastic, particularly σi(x) ≡ σi � 10
for i � 1, . . . , k.
We then create nine test problems by varying one

factor of the benchmark problem at a time while
keeping other factors the same:
1. k � 2.
2. k � 8.
3. Randomly generated components of βi from

uniform[0, 5], i � 1, . . . , 5.
4. Increasing variances (IV) configuration: σ1 � 5,

σ2 � 7.5, σ3 � 10, σ4 � 12.5, and σ5 � 15.
5. Decreasing variances (DV) configuration: σ1 � 15,

σ2 � 12.5, σ3 � 10, σ4 � 7.5, and σ5 � 5.

Figure 2. (Color online) Geometrical Illustration of the GSC
of Linear Mean Surfaces for d � 3

Note. Coordinate x1 is omitted because it is always one.
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6. Heteroscedastic simulation errors: σi(x) � 10xTβi,
i � 1, . . . , 5.

7. d � 2.
8. d � 6.
9. Xi ∼N (0.5,1) truncated on [0, 1] and Cov(Xi,Xj) �

0.5 for i, j � 2, 3, 4 and i �� j.
Compared with the benchmark problem, prob-

lems 1 and 2 change the number of alternatives,
problem 3 changes the configuration of the means so
it is no longer the GSC, problems 4 and 5 change the
configuration of the variances while retaining homo-
scedasticity, problem 6 considers heteroscedasticity,
problems 7 and 8 change the dimensionality of the
covariates, and problem 9 changes the distribution of
the covariates.

We further create three large-scale problems:
10. k � 100.
11. d � 50.
12. k � 100, d � 50.
Note that problem 12 changes both k and d relative

to the benchmark problem. For these three problems,
instead of taking 2d−1 design points as before, we
use the Latin hypercube sampling with m � 2d de-
sign points.

In all the problem instances, we set α � 0.05, δ � 1,
and n0 � 50. We conduct R � 104 macroreplications
for each problem–procedure combination. In each
macroreplication r � 1, . . . ,R, we apply procedures TS
and TS+, respectively, to a problem to obtain a se-
lection policy î∗r (x) and then apply it to select the best
alternative for each xt, a realization of X that is

randomly generated from its distribution for t � 1, . . . ,T
with T � 105. We calculate the achieved PCSE as

P̂CSE :� 1
R

∑R
r�1

1
T

∑T
t�1

I μi∗ xt( ) xt( ) − μ
î∗r xt( ) xt( ) < δ

{ }
, (8)

where I{·} denotes the indicator function. We also
report the average total sample size used by each
procedure for producing the selection policy.
The numerical results are shown in Table 1, from

which we have the following observations. First, as
expected, both procedures can deliver the target PCSE
in their respective domains. Procedure TS can deliver
the designed PCSE if the simulation errors are ho-
moscedastic, and procedure TS+ can deliver the de-
signed PCSE even when the simulation errors are
heteroscedastic. Moreover, the achieved PCSE is
higher than the target in general; see, for example, the
column “P̂CSE” under “Procedure TS” of Table 1,
except the entry for problem 6. This is especially the
case if the configuration of the means is not the GSC,
that is, problem 3. Overshooting the target PCSE
suggests that the total sample size is larger than
necessary for meeting the target PCSE. Such conser-
vativeness is a well-known issue for R&S procedures
under the IZ formulation; see Fan et al. (2016) for an
exposition on the issue.
Second, if procedure TS is applied to the instance of

heteroscedasticity, (i.e., problem 6), the target PCSE
cannot bemet. By contrast, if procedure TS+ is applied
to the instances of homoscedasticity, (i.e., all problem
instances except 6), it becomes overly conservative

Table 1. Results When the Target Is PCSE ≥ 95%

Procedure TS Procedure TS+

Problem h Sample size P̂CSE hHet Sample size P̂CSE

0 Benchmark 3.423 46,865 0.9610 4.034 65,138 0.9801
1 k � 2 2.363 8,947 0.9501 2.781 12,380 0.9702
2 k � 8 3.822 93,542 0.9650 4.510 130,200 0.9842
3 Non-GSC 3.423 46,865 0.9987 4.034 65,138 0.9994
4 IV 3.423 52,698 0.9618 4.034 73,265 0.9807
5 DV 3.423 52,720 0.9614 4.034 73,246 0.9806
6 Het 3.423 58,626 0.9232 4.034 81,555 0.9846
7 d � 2 4.612 21,288 0.9593 4.924 24,266 0.9662
8 d � 6 2.141 73,428 0.9656 2.710 117,626 0.9895
9 Normal Dist 3.447 47,529 0.9626 4.063 66,061 0.9821
10 k � 100 4.346 1,133,384 0.9758 5.117 1,570,911 0.9918
11 d � 50 3.222 508,977 0.9583 4.312 911,326 0.9926
12 k � 100, d � 50 4.886 23,400,677 0.9765 6.702 44,024,486 0.9991

Notes. (i) In the presence of heteroscedasticity, the boxed number suggests that procedure TS fails to
deliver the target PCSE, whereas the bold number suggests that procedure TS+ succeeds in doing so.
(ii) In these experiments, the sampling effort is negligible because it only involves generating normally
distributed errors. Thus, the run time for producing the selection policy by each procedure reflects
the computational overhead of each procedure. It is found that, even for the relatively large-scale
problem 12, the run time is shorter than one second, which indicates negligible overhead.
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compared with procedure TS. This is reflected by the
achieved PCSE being substantially higher than the
target and the sample size being substantially larger
than that of procedure TS.

Third, as the number of alternative k increases,
which corresponds to problems 1, 0, and 2, the sample
size allocated to each alternative on average (mea-
sured by the ratio of the total sample size to k) in-
creases as well. This is caused by the increase in the
constant h as k increases. Notice that the sample size
required for alternative i on one design point in
procedure TS isNi � max{�h2S2i /δ2
, n0}. Thus, a larger
h means a larger Ni. A similar argument holds for
procedure TS+ aswell. This suggests that, as k increases,
each alternativemust be estimatedmore accurately in
order to differentiate them.

Fourth, the numerical results of problems 4 and 5
are almost identical. In particular, the value of h is
identical for both problems because the equations that
determine h (Equation (4)) and hHet (Equation (5)) do
not depend on the configuration of the variances.
Then, as the sum of the variances is the same for both
problems, the total sample size that is approximately
proportional to h2 times the sum of the variances is
almost the same for both problems.

Finally, the results for problems 10–12 are also as
expected. They show that both procedure TS and
procedure TS+ can be used to handle relatively large-
scale problems. Note that h and hHet, the key quan-
tities for determining the second-stage sample size of
the two procedures, respectively, can be computed
via the Monte Carlo method or the stochastic ap-
proximation method; see further discussion in Sec-
tion EC.2 of the e-companion. Therefore, the com-
putational requirement for determining the two
quantities and, thus, the total sample size as well as
the sample allocation is negligible relative to the
expenses of running the simulation model.

7. Experimental Design and Robustness
to Linearity Assumptions

We have assumed so far that the design points are
given with the design matrix X satisfying that X TX is
nonsingular. In this section, we discuss how to select
the design points. We show that the extreme design,
that is, locating the design points at the corners of the
design region Θ, is typically a good strategy under
the linearity assumptions (e.g., Assumptions 1–4). In
practice, however, linearity assumptions are often
satisfied only approximately. Then, the selection of
design points is critically related to the robustness
of the linearity assumptions. We show through nu-
merical experiments that the extreme design may
perform poorly when the linearity assumptions are
violated mildly, but distributing the design points

evenly in the design region Θ appears to be quite
robust to the linearity assumptions.

7.1. Optimal Design Under Linearity Assumptions
Experimental design is a classical problem in statis-
tics. In classical design for linear regression, the ob-
jective is often to choose a design that optimizes a
certain criterion given a fixed total sample size. Pop-
ularly used criteria include D-optimal design that
minimizes the determinant of the covariance matrix of
the OLS estimator of β, G-optimal design that mini-
mizes themaximal variance of thefitted response over
the design region, and many others; see Silvey (1980,
chapter 2) for more details on the subject. Some of the
optimal designs are equivalent under certain condi-
tions. For instance, Kiefer andWolfowitz (1960) prove
that the D- and G-optimal designs are equivalent in
the continuous case (also called the approximate case)
in which the integer constraint on the sample size at
each design point is relaxed; see Silvey (1980, chapter 3)
for a more careful and complete discussion on the
general equivalence theory.
However, the optimal design in the R&S-C context

is different from the classical ones. In our procedures,
an optimal design is the design that minimizes the
total sample size required by the procedures to de-
liver the predetermined PCSE. Using procedure TS as
an example, the total sample size is

∑k
i�1 Nim, whereNi

is approximately h2S2i /δ
2. Because the design matrix

X � (x1, . . . , xm)T , we may formulate the optimal de-
sign problem as the following optimization problem:

min
m,x1,...,xm

h2m

s.t. E

{∫ ∞

0

[∫ ∞

0
Φ

h̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n0m−d( ) t−1+s−1( )XT X TX( )−1X√( )

× η s( )ds
]k−1

η t( )dt
}
� 1−α,

rank X TX( ) � d,

m ≥ d, integer,
x1, . . . , xm ∈ Θ,

where the first constraint is exactly (4) and the second
constraint ensures the nonsingularity of X TX . The
problem is, in general, a nonconvex integer pro-
gramming problem, and it is difficult to solve. More-
over, even without concerning the integer constraint,
the optimal design is a function of the distribution ofX
and is often difficult to characterize. In this section,we
derive an optimal design, which is invariant to the
distribution of X, for a simplified case in which m is
fixed and an additional constraint is imposed.
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Specifically, we assume that

Θ � 1{ } × l2,u2[ ] × · · · × ld, ud[ ],
d ≥ 2 and lw < uw for all w � 2, . . . , d. (9)

Here, thefirst covariate is always one,which is used to
take care of the intercept terms in the linear models,
and all other d − 1 covariates are in an interval [lw,uw]
for w � 2, . . . , d. Notice that all the following analysis
can also apply to the linear models without intercept
terms with similar arguments. Suppose that we want
to allocate m � b(2d−1) design points in Θ, where b ≥ 1
is a fixed integer. We denote these design points by
aji ∈ Θ, i � 1, . . . , 2d−1, and j � 1, . . . , b. Moreover, for
any j, we let aj1, . . . , a

j
2d−1 be symmetric with respect to

the Cartesian coordinate system located at the cen-
ter of Θ. See Figure 3 for an illustration with d � 3
and b � 2. Let S j :� {a j

1, . . . ,a
j
2d−1} for j � 1, . . . , b. Then,

{S1, . . . ,Sb} denotes a set of b(2d−1) design points (in
which duplicates are allowed), and we call it a sym-
metric design. Notice that the symmetric design en-
sures that rank(X TX ) � d. The reason that we only
consider symmetric designs is, without considering
the distribution of the covariates X, symmetric de-
signs are natural choices because of the symmetric
nature of the design region Θ.

Let S 0 denote the set of corner points ofΘ. It is easy
to see that S 0 has 2d−1 elements. A simple design is to
use all the points in S 0 for b times, that is, S1 � · · · �
S b � S 0, and we call it the extreme design. Notice that
the extreme design aims to spread out all the design
points so that the OLS estimators of βi can have
small variances.

The extreme design is also a symmetric design. In
the following theorem, we show that the extreme
design is the best symmetric design regardless of

the distribution of X. The proof is included in Section
EC.9 of the e-companion.

Theorem 6. Suppose that Assumption 1 or 3 holds, pro-
cedure TS is used to solve an R&S-C problem, and m �
b(2d−1) design points are allocated in Θ as assumed in (9).
Then, among all symmetric designs, the extreme design
S1 � · · · � Sb � S0 minimizes the expected total sample size.

There is an interesting link between the optimal
design in R&S-C with that in the classic linear re-
gression setting. That is, the extreme design is also
both the D-optimal and G-optimal designs in lin-
ear regression when the total sample size is b(2d−1)
among all feasible designs (without the symmetry
constraint). This result is formally stated in Theorem 7,
and its proof is included in Section EC.10 of the
e-companion, in which the formal definitions of D- and
G-optimality are also given.Wewant to emphasize that
Theorem 7 further justifies the consideration of the
extreme designs for R&S-C problems.

Theorem 7. Consider the linear regression problem Y(x) �
xTβ + ε, where β, x ∈ Rd and ε is random error with mean
zero and variance σ2. Let d ≥ 2 and x1 ≡ 1 so that the in-
tercept term is included. Suppose that m � b(2d−1) design
points are allocated in Θ as assumed in (9). Then, among all
feasible designs, the extreme design S1 � · · · � Sb � S0 is
both D- and G-optimal.

Remark 13. The total sample size of procedure TS+
depends on the variances of the design points, which
are not known a priori. Therefore, we can only prove
that, among all symmetric designs, the extreme design
minimizes the constant hHet defined in Equation (5).

7.2. Robustness to Linearity Assumptions
In practice, the linearity assumptions (i.e., Assump-
tions 1–4) often hold only approximately. Notice
that the linear models can be generalized to capture
nonlinearity in μi(x) by the use of basis functions;
see Remark 5. Here, by saying that the linearity as-
sumption does not hold, we actuallymean that μi(x) is
not linear in x, andwe do not have a proper set of basis
functions to perform a change of variables.
It is argued in James et al. (2013) that linear models

are often robust to nonlinear behaviors and lead to
good predictions. However, the extreme design is, in
general, not robust to nonlinearity because it allocates
no design points in the interior of the design region
and leaves thefittedmodels depending completely on
the corner points. To improve the robustness of the
experimental design, one can allocate design points
evenly in the design region. One such design that is
widely used is the so-called minimax design, which,
roughly speaking, ensures that all points in the design
region are not too far from the nearest design points.
It is shown by Johnson et al. (1990) that the minimax

Figure 3. (Color online) Geometrical Illustration of the
Symmetric Design for d � 3 and b � 2

Note. Coordinate x1 is omitted because it is always one.
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design is asymptotically equivalent to the Bayesian
G-optimal design for general Gaussian processes,
which mimics the classical G-optimal design but is
defined in a Bayesian framework. In the rest of this
section, we conduct numerical studies to compare the
extreme design and the minimax design and to un-
derstand their behaviors under different scenarios.

We consider the case in which Θ � {1} × [0, 1]d−1
and generate the true surfaces randomly from a
(d − 1)-dimensional second-order stationary Gauss-
ian random field with mean 0 and isotropic co-
variance Cov(z, z′) � exp{−λ‖z − z′‖2} for z, z′ ∈ Rd−1,
where ‖ · ‖ represents the Euclidean norm. Notice that
parameter λ controls the scale of the random field,
and largerλoften leads to a higher level of violation of
the linearity assumption. To keep the linearity as-
sumptions approximately true, we discretize the sur-
faceswith a step size 0.01 for each coordinate, calculate
the R2 of the discretized observations, and only keep
the surfaces whose R2 is above 0.8. We first obtain 50
such approximately linear random surfaces. Then, we
randomly create 100 R&S-C problems, each with five
surfaces that are randomly drawn from those 50
surfaces. We consider only the homoscedastic errors
and add normal noises with σ21 � · · · � σ25 � 1.

We consider λ � 0.5 and λ � 3 to capture small and
large violations of the linearity assumption. We also
consider d � 2 and d � 3. Figure 4 shows the typical
shapes of these randomly generated surfaces. For
each R&S-C problem, we let X2, . . . ,Xd be i.i.d. uni-
form[0, 1] random variables and set α � 0.05, δ � 0.2,

n0 � 50, R � 103, and T � 104. We compare the ex-
treme design andminimax design with 2(2d−1) points,
that is, four design points when d � 2 and eight design
points when d � 3. The design matrices are listed in
Table 2.We report themeans and standard deviations
(SD) of the average total sample size and the achieved
PCSE (i.e., P̂CSE) over 100 problems in Table 3.We also
calculate the average regret (also called the oppor-
tunity cost in Bayesian R&S literature), which is de-
fined as 1

R
∑R

r�1 1
T
∑T

t�1{μi∗(xt)(xt) − μ
î∗r xt( )(xt)}. The means

and SD of the average regrets are also reported in
Table 3.
From Table 3, we see that the extreme designs lead

to significantly smaller total sample sizes than the
minimax designs if the linearity assumption is more
or less satisfied (e.g., λ � 0.5), but their achieved PCSE
and regrets are significantly poorer than those of the
minimax designs if the linearity assumption is more
violated (e.g., λ � 3). Based on these observations, we
have the following conclusions on experimental de-
sign and robustness on linearity assumptions.
• The proposed procedures performwell when the

surfaces are approximately linear though the statis-
tical guarantee may not always hold.
• When the true surfaces are exactly linear or only

slightly nonlinear, the extreme design is preferred
because it requires fewer samples to deliver the re-
quired PCSE.
• When the true surfaces are relatively nonlinear,

even designs, such as the minimax design, are pre-
ferred because they are more robust to nonlinearity.

Figure 4. (Color online) Randomly Generated Surfaces with R2 ≥ 0.8

Note. In the general case, nonlinear surfaces do not necessarily mean that the linearity assumption is violated.
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• This intuition suggests that, when the design
region Θ is of a general shape other than a hyper-
rectangle, it is better to allocate the design points far
from each other if the linearity is strong and more
evenly in the region if the linearity is weak.

8. A Case Study: Personalized Treatment
for Cancer Prevention

Esophageal cancer (see Figure 5) is the seventh-leading
cause of cancer death amongmales (making up 4%) in
theUnited States, according to Cancer Facts & Figures
2016 (American Cancer Society 2016). Esophageal
adenocarcinoma (EAC) is a main subtype of esoph-
ageal cancer, and its incidence has increased 500%
over the past 40 years (Hur et al. 2013, Choi et al. 2014).
Thus, themanagement of BE, a precursor to EAC, is an
active topic in cancer research. A common strategy for
BE management is endoscopic surveillance, which
attempts to prevent EAC through dysplasia treat-
ment or to identify EAC before it becomes invasive.
Recently, chemoprevention has received substantial
attention as a method to lower the progression of BE
to EAC, and aspirin and statins are two particular
drugs that are demonstrated to be effective (Kastelein
et al. 2011). For each BE patient, the progression rate
to cancer depends on a variety of factors, including

age; weight; lifestyle habits, such as smoking and
alcohol use; the grade of dysplasia, etc. In addition,
each patient may have a different response to drugs
depending on drug resistance and tolerance. Hence, it
is conceivable that the best treatment regimen for BE is
patient-specific.
We formulate the problem of selecting the best

treatment regimen for each BE patient as an R&S-C
problem. There are three alternatives: endoscopic
surveillance only (i � 1), aspirin chemoprevention
with endoscopic surveillance (i � 2), and statin che-
moprevention with endoscopic surveillance (i � 3).
For simplicity, we consider only the starting age of a
treatment regimen, risk (i.e., the annual progression rate
of BE to EAC), and drug effects (i.e., the progression
reduction effect of a drug) as patient characteristics
that determine the effectiveness of a treatment regi-
men. More specifically, the vector of covariates is
X � (1,X1,X2,X3,X4)T , whereX1 is the starting age,X2
is the risk, and X3 and X4 are the drug effects of as-
pirin and statin, respectively. We use the expected
QALYs as the performancemeasure to compare different
alternatives.
To solve this R&S-C problem, we need a model to

simulate the QALYs of the treatment regimens for
different patients. Fortunately, a discrete-timeMarkov

Table 2. Extreme Designs and Minimax Designs for d � 2, 3

d � 2 d � 3

Extreme design Minimax design Extreme design Minimax designa

1 0
1 1
1 0
1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1/8
1 3/8
1 5/8
1 7/8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0
1 0 1
1 1 0
1 1 1
1 0 0
1 0 1
1 1 0
1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0.1557 0.2086
1 0.1557 0.7914
1 0.8443 0.2086
1 0.8443 0.7914
1 0.2468 0.5000
1 0.7532 0.5000
1 0.5000 0.1794
1 0.5000 0.8206

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
aSee Melissen and Schuur (1996).

Table 3. Means and SD (in Parentheses) over 100 Problems

Extreme design Minimax design

Case R2 Sample size P̂CSE Regret Sample size P̂CSE Regret

d � 2, λ � 0.5 0.965 1,730 0.9948 0.007 2,869 0.9978 0.005
(0.002) (2) (0.0086) (0.008) (5) (0.0037) (0.005)

d � 2, λ � 3 0.921 1,730 0.8558 0.100 2,941 0.9799 0.013
(0.003) (2) (0.1394) (0.109) (50) (0.0297) (0.016)

d � 3, λ � 0.5 0.917 2,282 0.9528 0.024 4,659 0.9876 0.008
(0.003) (70) (0.0586) (0.027) (16) (0.0118) (0.007)

d � 3, λ � 3 0.863 2,425 0.7358 0.204 4,904 0.9133 0.047
(0.002) (120) (0.1306) (0.139) (96) (0.0502) (0.030)
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chain model developed by Hur et al. (2004) and Choi
et al. (2014) may be used. The model simulates the
transitions among different health states of a BE
patient until death, and the transition diagram of the
model is shown in Figure 6. The transition probability
matrices are well calibrated so that the simulation
outputs match the published results. We adopt this
model to simulate individual patients with spe-
cific characteristics, which are defined by the covariates
X and assumed to be observable. This Markov chain
model is, of course, a highly simplified model com-
pared with those having more detailed biological
mechanisms (see, for example, the multistage clonal
expansion EACmodel of Curtius et al. 2015). However,
as an illustrative purpose,we adopt this simplemodel
because of its accessibility and relatively short run-
ning time because we need to run the model in a brute
force way to obtain the mean performance surfaces of
all alternative, that is, μi(x) for i � 1, 2, 3, and use them
as the true values to evaluate the performance of the
proposed procedures.

In this case study, we assume that the distributions
of the covariates are known because there are often
ample historical data to calibrate these distributions
in practice. Furthermore, we specify these distribu-
tions as follows: We assume X1 ∈ [55, 80] as it is
documented by Naef and Savary (1972) that there is a
BE incidence peak for individuals with ages within
this range. We assume X2 ∈ [0, 0.1] following the
specification in Hur et al. (2004) and set X3 ∈ [0, 1]
and X4 ∈ [0, 1] by definition. Moreover, we assume
E[X3] � 0.53 and E[X4] � 0.54 following the study
by Kastelein et al. (2011). Nevertheless, because of a
lack of detailed data, we do not know the distribu-
tion of covariates exactly among the entire population
of BE patients. Instead, we suppose that X1, . . . ,X4
are independent, and their distributions are specified
in Table 4. The design points are specified as follows.
We take X1 from {61, 74}, X2 from {0.1/4, 0.3/4}, X3
from {1/4, 3/4}, and X4 from {1/4, 3/4} and then
combine them in a full factorial way. Therefore, it is a
relatively even design with 16 design points.

Before carrying out the R&S-C procedures, we
conduct several trial runs of the simulation model,
and we find that the linearity assumptions hold ap-
proximately and the simulation errors are clearly
heteroscedastic. Therefore, procedure TS+ is used.
Notice that, to calculate the achieved PCSE (i.e., P̂CSE)
of our procedure, we need the true response surfaces
μi(x) for all x ∈ Θ and i � 1, 2, 3 to identify the true best
selection policy i∗(x). To that end, we use extensive
simulation to approximate the true response surfaces.
We discretizeX2 with a step size of 0.01 and discretize
X3 andX4 with a step size of 0.1. At each discretization
point, we run the simulation model for 106 replica-
tions so that the estimation error is negligible (e.g., the
half width of the 95% confidence interval is less than
0.02 QALYs). The response at any other x is ap-
proximated via a linear interpolation. To compute
P̂CSE, we conduct R � 300 macroreplications. For
each macroreplication r, we apply procedure TS+ to
obtain the selection policy î∗r (x) and then apply it to

Figure 5. (Color online) Diagram of Esophageal Cancer

Figure 6. (Color online) Transition Diagram of the Markov
Simulation Model

Notes. (1) A person in each state may die from age-related, all-cause
mortality. (These transitions are omitted in the diagram.) (2) The time
duration between state transitions is one month. (3) The details of the
state transitions inside the dotted box depends on whether aspirin
chemoprevention or statin chemoprevention is used.
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select the best treatment regimen for T � 105 simu-
lated BE patients whose characteristics are randomly
generated from the distribution of X. Other param-
eters of procedure TS+ are specified as follows: α � 0.05,
δ � 1/6 (i.e., two months), and n0 � 100. Our case
study shows that the P̂CSE � 99.5%, which is sub-
stantially higher than the target level 1 − α � 95%.
This is because the configuration of the means of this
problem is much more favorable than the GSC, and
thus, the selection procedure behaves in an overly
conservative manner in this situation. (Recall that
problem 3 in Section 6 has a similar behavior.)

Remark 14. In principle, one could compute the “true”
response surfaces of this simulation model that
correspond to the three treatment regimens in a brute
force way subject to a discretization scheme and then
identify the best alternative for each individual patient.
However, this would be very time-consuming even
for a coarse discretization scheme and a moderate level
of estimation accuracy as specified. (It takes about eight
days on a desktop computer withWindows 10 OS, 3.60
GHz CPU, and 16 GB RAM to complete the simulation
implemented in MATLAB.) By contrast, it takes less
than one minute for procedure TS+ to obtain a selection
policy. This demonstrates the practical value of our
model and selection procedures in real-world applications.

Todemonstrate theusefulness ofR&S-C as a decision-
making framework, we compare the personalized
approach with a more traditional approach, which
selects the treatment regimen that is the best for the
entire population, that is, i† � argmax1≤i≤3E[μi(X)]. The
latter corresponds to a conventional R&S approach. In
this problem, we find i † � 3, which indicates that
alternative 3 is better than the others based on the
population average. Notice that choosing the pop-
ulation best, that is, always selecting alternative 3, can
also be regarded as a selection policy. Based on our
numerical study, we find that this policy corresponds
to a P̂CSE of 75.8%; that is, alternative 3 is indeed
the best or within the IZ for 75.8% of the population.
In contrast, the personalized approach that we re-
port earlier has a P̂CSE of 99.5%. The 23.7% difference
in P̂CSE demonstrates clearly the advantage of the
personalized approach.
In addition to PCSE, we consider QALYs regret as

another criterion to compare the two approaches.
More specifically, we consider the expected QALYs
regret, which is the expected difference between the
QALYs under the true optimal treatment regimen
and the selected one by each approach. Conditionally
on X � x, the expected regret is μi∗(x)(x) − μ3(x) for
the traditional approach and μi∗(x)(x) − μ

î∗ x( )(x) for the
personalized approach, where î∗(x) comes from one
macroreplication of procedure TS+. The results are
plotted in Figure 8, in which the left panel shows the
distribution of regret for the entire BE population
(i.e., X ∈ Θ), and the right panel shows the distribution
of regret for a specific group of patients (i.e., X3 � 0.9
and X4 � 0.2).
From these results, we see that using the person-

alized approach (i.e., the R&S-C approach), BE pa-
tients have much lower expected QALYs regret than
using the traditional approach (i.e., the conventional
R&S approach). Among the entire BE population (left
panel of Figure 8), when the personalized approach
is used, more than 99% of the patients have either
no regret or a regret that is less than or equal to two
months (i.e., the IZ parameter). However, when the
traditional approach is used, close to a quarter (i.e.,
24%) of the patients have a regret that is more than
twomonths, and 2% of them have a regret that ismore
than 12 months.

Table 4. Distributions of the Covariates

Covariate Distribution Support Mean

X1 Discrete (Figure 7) {55, . . . , 80} 64.78
X2 Uniform (0, 0.1) [0, 0.1] 0.05
X3 Triangular (0, 0.59, 1) [0, 1] 0.53
X4 Triangular (0, 0.62, 1) [0, 1] 0.54

Figure 7. (Color online) Probability Mass Function of
X1 (Truncated)

Note. Data source: U.S. 2016 population data, U.S. Census Bureau.
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If we look at the specific group of patients, for
exaemple, the group as considered in the right panel
of Figure 8, we see that the reduction of the regret
using the personalized approach is even more sub-
stantial, which demonstrates the key point of per-
sonalized medicine, that is, a universal treatment,
even it seems fairly good for the entire population,
may perform quite poorly for certain groups of pa-
tients, and we can do much better with the help of
personalized medicine.

9. Conclusions
Ranking and selection is a long-standing research
problem in simulation literature. The emerging pop-
ularity of personalized decision making leads us to
consider this classic problem in a new environment in
which the performance of an alternative depends on
some observable random covariates. A critical feature
in the new setting is that the goal is not to seek a single
alternative having a superior performance, but a se-
lection policy as a function of the covariates. Albeit
computed off-line via simulation model, the selection
policy can be applied online to specify the best al-
ternative for the subsequent individuals after ob-
serving their covariates. Therefore, R&S-C reflects a
shift in perspective regarding the role of simulation: a
tool for system control instead of system design. In
particular, we demonstrate the practical value of
R&S-C via a case study of personalized medicine for
selecting the best treatment regimen in prevention of
esophageal cancer.

This paper uses a linear model to capture the re-
lationship between the response of an alternative and
the covariates and develops two-stage selection pro-
cedures accordingly under the IZ formulation. How-
ever, the presence of covariates complicates the con-
cept of PCS because the best alternative varies as a
function of the covariates. We define the statistical
validity of a procedure in terms of average PCS al-
though other forms of unconditional PCS are also

possible. This paper is afirst step towardunderstanding
R&S-C problems under a frequentist perspective.
There are many potential directions for future work,
such as nonparametric models and sequential selec-
tion procedures.
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