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Online Appendix to “Technical Note—Knowledge Gradient for

Selection with Covariates: Consistency and Computation” by Ding,

Hong, Shen and Zhang

A. Proof of Lemma 1

Before proving Lemma 1, we first establish the following Lemma 2.

Lemma 2. Let g(s, t) := tφ(s/t)− sΦ(−s/t), whereΦ is the standard normal distribution function and φ is its
density function. Then,

(i) g(s, t) > 0 for all s ≥ 0 and t > 0;

(ii) g(s, t) is strictly decreasing in s ∈ [0,∞) and strictly increasing in t ∈ (0,∞);

(iii) g(s, t)→ 0 as s→∞ or as t→ 0.

Proof of Lemma 2. Let h(u) := φ(u)− uΦ(−u) for u ≥ 0, then g(s, t) = th(s/t). Note that

h′(u) = φ′(u) + uφ(−u)− Φ(−u) = −uφ(u) + uφ(u)− Φ(−u) = −Φ(−u) < 0,

Hence, h(u) is strictly decreasing in u ∈ [0,∞). Note that limu→∞ φ(u) = 0 and

lim
u→∞

uΦ(−u) = lim
u→∞

Φ(−u)

u−1
= lim

u→∞
φ(u)

u−2
= lim

u→∞
u2

√
2πeu2/2

= 0,

hence limu→∞ h(u) = 0. Then we must have h(u) > 0 for all u ∈ [0,∞), from which part (i) follows
immediately.

For part (ii), the strict decreasing monotonicity of g(s, t) in s ∈ [0,∞) and the strict increasing mono-
tonicity of g(s, t) in t ∈ (0,∞) follow immediately from the strict decreasing monotonicity of h(u) in u
and g(s, t) = th(s/t).

Part (iii) is due to that limu→∞ h(u) = 0 and g(s, t) = th(s/t).

Now we are ready to prove Lemma 1

Proof of Lemma 1. By eqs. (5) and (7),

f(i,x,v) := E
[

max
1≤a≤M

µn+1
a (v)

∣∣∣Fn, an = i,vn = x

]
= E

[
max

1≤a≤M

(
µna(v) + σna (v,x)Zn+1

)]
= E

[
max

{
µni (v) + σ̃ni (v,x)Zn+1, max

a6=i
µna(v)

}]
= E

[
max

{
µni (v) + |σ̃ni (v,x)|Zn+1, max

a6=i
µna(v)

}]
. (20)
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For notational simplicity, let α := µni (v), β := σ̃ni (v,x), γ := maxa6=i µna(v), and δ := α− γ.

If β 6= 0, then

f(i,x,v) =

∫ −δ/|β|
−∞

γφ(z) dz +

∫ ∞
−δ/|β|

(α+ |β|z)φ(z) dz

=γΦ(−δ/|β|) + α[1− Φ(−δ/|β|)] + βφ(−δ/|β|),

where the second equality follows from the identity
∫∞
t zφ(z) dz = φ(t) for all t ∈ R. Next, we calculate

the integrand in eq. (12). By noting that φ(z) = φ(−z) and Φ(−z) = 1− Φ(z) for all z ∈ R,

f(i,x,v)− max
1≤a≤M

µna(v) = f(i,x,v)−max(α, γ) =

|β|φ(δ/|β|)− δΦ(−δ/|β|), if α ≥ γ

|β|φ(δ/|β|) + δΦ(δ/|β|), if α < γ

= |β|φ(|δ/β|)− |δ|Φ(−|δ/β|). (21)

If β = 0, then it is straightforward from eq. (20) to see that f(i,x,v) −max1≤a≤M µna(v) = 0. On the
other hand, by Lemma 2 (iii), we can set the right-hand side of eq. (21) to be zero for β = 0. Hence, eq. (21)
holds for β = 0 as well.

Replacing the integrand in eq. (12) with eq. (21) yields the expression of IKGn(i,x) in Lemma 1.

B. Proof of Proposition 1

To simplify notation, in this subsection we assume M = 1 and suppress the subscript i unless otherwise
specified, but the results can be generalized to the case of M > 1 without essential difficulty. In particular,
we use κ to denote a generic covariance function, k0 the prior covariance function of a Gaussian process,
and kn the posterior covariance function. We will collect below several basic results on reproducing kernel
Hilbert space (RKHS) and refer to Berlinet and Thomas-Agnan (2004) for an extensive treatment on the
subject.

Definition 2. LetX be a nonempty set andκ be a covariance function onX . A Hilbert spaceHκ of functions
onX equipped with an inner-product 〈·, ·〉Hκ is called a RKHS with reproducing kernel κ, if (i) κ(x, ·) ∈ Hκ
for all x ∈ X , and (ii) f(x) = 〈f, κ(x, ·)〉Hκ for all x ∈ X and f ∈ Hκ. Furthermore, the norm ofHκ is
induced by the inner-product, i.e., ‖f‖2Hκ = 〈f, f〉Hκ for all f ∈ Hκ.

Remark 4. In Definition 2, for a fixed x, κ(x, ·) is understood as a function mapping X to R such that
y 7→ k(x,y) for y ∈ X . Moreover, condition (ii) is called the reproducing property. In particular, it implies
that κ(x,x′) = 〈κ(x, ·), κ(x′, ·)〉Hκ and κ(x,x) = ‖κ(x, ·)‖2Hκ for all x,x′ ∈ X .

Remark 5. By Moore-Aronszajn theorem (Berlinet and Thomas-Agnan 2004, Theorem 3), for each covariance
function κ there exists a unique RKHSHκ for which κ is its reproducing kernel. Specifically,

Hκ =

{
f =

∞∑
i=1

ciκ(xi, ·) : ci ∈ R,xi ∈ X , i = 1, 2, . . . , such that ‖f‖2Hκ <∞

}
,
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where ‖f‖2Hκ :=
∑∞

i,j=1 cicjκ(xi,xj). Moreover, the inner-product is defined by

〈f, g〉Hκ =
∞∑

i,j=1

aibjκ(xi,x
′
j),

for any f =
∑∞

i=1 aiκ(xi, ·) ∈ Hκ and g =
∑∞

j=1 bjκ(x′j , ·) ∈ Hκ.

The following lemma asserts that convergence in norm in a RKHS implies uniform pointwise convergence,
provided that the covariance function κ is stationary.

Lemma 3. Let X be a nonempty set and κ be a covariance function on X . Suppose that a sequence of functions
{fn ∈ Hκ : n = 1, 2, . . .} converges in norm ‖·‖Hκ as n→∞. Then the limit, denoted by f , is inHκ. Moreover,
if κ is stationary, then fn(x)→ f(x) as n→∞ uniformly in x ∈ X .

Proof of Lemma 3. First of all, f ∈ Hκ is guaranteed as a Hilbert space is a complete metric space. A basic
property of RKHS is that convergence in norm implies pointwise convergence to the same limit; see, e.g.,
Corollary 1 of Berlinet and Thomas-Agnan (2004, page 10). Namely, fn(x)→ f(x) as n→∞ for all x ∈ X .

To show the pointwise convergence is uniform, note that since κ is stationary, there exists a function
ϕ : Rd 7→ R such that κ(x,x′) = ϕ(x− x′). Hence, ‖κ(x, ·)‖2Hκ = κ(x,x) = ϕ(0). It follows that

|fn+m(x)− fn(x)| = |〈fn+m − fn, κ(x, ·)〉Hκ |

≤ ‖fn+m − fn‖Hκ‖κ(x, ·)‖Hκ = ‖fn+m − fn‖Hκ
√
ϕ(0), (22)

for all n and m, where the first equality follows from the reproducing property.
Since a Hilbert space is a complete metric space, the ‖·‖Hκ-converging sequence {fn} is a Cauchy

sequence inHκ, meaning that ‖fn+m − fn‖Hκ → 0 as n→∞ for all m. Since this convergence to zero is
independent of x, it follows from eq. (22) that {fn} is a uniform Cauchy sequence of functions, thereby
converging to f uniformly in x ∈ X .

In the light of Lemma 3, in order to establish the uniform convergence of kn(x,x′) as a function of x′, it
suffices to prove the norm convergence of kn(x, ·) in the RKHS induced by k0. We first establish this result
for a more general case in the following Lemma 4, where k0 is not required to be stationary.

Lemma 4. LetHk0 be the RKHS induced by k0. If k0(x,x) > 0 for all x ∈ X , then for any x ∈ X , kn(x, ·)
converges in norm ‖·‖Hk0 as n→∞.

Proof of Lemma 4. Fix x ∈ X . The fact that kn(x, ·) ∈ Hk0 is due to eq. (4). It follows from eq. (8) that
{kn(x,x) : n ≥ 1} form a non-increasing sequence bounded below by zero. The monotone convergence
theorem implies that kn(x,x) converges as n→∞. Hence, for all m ≥ 1,

lim
n→∞

∣∣kn+m(x,x)− kn(x,x)
∣∣ = 0. (23)

Let V n := {v` : ` = 0, . . . , n− 1} and V n+m
n := {v` : ` = n, . . . , n+m− 1}. Then, by eq. (4),

kn+m(x, ·)− kn(x, ·) = −kn(x,V n+m
n )[kn(V n+m

n ,V n+m
n ) + λ(V n+m

n )]−1kn(V n+m
n , ·). (24)
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For notational simplicity, let Σn+m
n := kn(V n+m

n ,V n+m
n ) + λ(V n+m

n ). Then,

∥∥kn+m(x, ·)− kn(x, ·)
∥∥2

Hk0

= 〈kn(x,V n+m
n )[Σn+m

n ]−1kn(V n+m
n , ·), kn(x,V n+m

n )[Σn+m
n ]−1kn(V n+m

n , ·)〉Hk0

= kn(x,V n+m
n )[Σn+m

n ]−1〈kn(V n+m
n , ·), kn(V n+m

n , ·)〉Hk0 [Σn+m
n ]−1kn(V n+m

n ,x), (25)

where
〈kn(V n+m

n , ·), kn(V n+m
n , ·)〉Hk0 =

(
〈kn(vn+i, ·), kn(vn+j , ·)〉Hk0

)
0≤i,j≤m−1

.

Moreover, note that by eq. (4),

kn(V n+m
n , ·) = k0(V n+m

n , ·)− k0(V n+m
n ,V n)[k0(V n,V n) + λ(V n)]−1k0(V n, ·). (26)

Let Σn := k0(V n,V n) + λ(V n). Then, it follows from eq. (26) and the reproducing property that

〈kn(V n+m
n , ·), kn(V n+m

n , ·)〉Hk0

= k0(V n+m
n ,V n+m

n )− 2k0(V n+m
n ,V n)[Σn]−1k0(V n,V n+m

n )

+ k0(V n+m
n ,V n)[Σn]−1k0(V n,V n)[Σn]−1k0(V n,V n+m

n )

= k0(V n+m
n ,V n+m

n )− k0(V n+m
n ,V n)[Σn]−1k0(V n,V n+m

n )

− k0(V n+m
n ,V n)[Σn]−1{I − k0(V n,V n)[Σn]−1}k0(V n,V n+m

n )

= kn(V n+m
n ,V n+m

n )− k0(V n+m
n ,V n)[Σn]−1{I − k0(V n,V n)[Σn]−1}k0(V n,V n+m

n ), (27)

where I denotes the identity matrix of a compatible size. Furthermore, note that

I − k0(V n,V n)[Σn]−1 = I − [k0(V n,V n) + λ(V n)− λ(V n)][k0(V n,V n) + λ(V n)]−1

= I − I + λ(V n)[k0(V n,V n) + λ(V n)]−1

= λ(V n)[Σn]−1. (28)

We now combine eqs. (27) and (28) to have

〈kn(V n+m
n , ·), kn(V n+m

n , ·)〉Hk0

= kn(V n+m
n ,V n+m

n )− k0(V n+m
n ,V n)[Σn]−1λ(V n)[Σn]−1k0(V n,V n+m

n ),

which is the difference between two positive semi-definite matrices. Therefore, by eq. (25),

∥∥kn+m(x, ·)− kn(x, ·)
∥∥2

Hk0
≤ kn(x,V n+m

n )[Σn+m
n ]−1kn(V n+m

n ,V n+m
n )[Σn+m

n ]−1kn(V n+m
n ,x)

≤ kn(x,V n+m
n )[Σn+m

n ]−1Σn+m
n [Σn+m

n ]−1kn(V n+m
n ,x)

= kn(x,x)− kn+m(x,x),
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where the second inequality follows from the definition of Σn+m
n and the equality follows from eq. (24).

Then, we apply eq. (23) to conclude that ‖kn+m(x, ·)− kn(x, ·)‖Hk0 → 0 as n → ∞ for all m ≥ 1.
Therefore, kn(x, ·) converges in norm ‖·‖Hk0 as n→∞.

With Lemmas 3 and 4, we are ready to prove Proposition 1.

Proof of Proposition 1. Fix i = 1, . . . ,M . Since k0
i is stationary, k0

i (x,x) > 0 for allx ∈ X . Then by Lemma 4,
for anyx ∈ X , kni (x, ·) converges in norm ‖·‖Hk0 as n→∞. Then by Lemma 3, for the ‖·‖Hk0 -converging
limit k∞i (x, ·), kni (x,x′)→ k∞i (x,x′) uniformly in x′ ∈ X as n→∞.

C. Proof of Proposition 2

Notice that if η∞i =∞ under a sampling policy π, then due to the compactness of X , {vn : an = i, n =

0, 1, . . .} (i.e., the sampling locations associated with alternative i) must have an accumulation point
xacc
i ∈ X . Namely, there exists a subsequence of {n : an = i, n = 0, 1, . . .}, say {`i,n}∞n=0, such that

`i,n →∞ and v`i,n → xacc
i as n→∞. For any ε > 0, letB(xacc

i , ε) := {x : ‖xacc
i − x‖ ≤ ε} be the closed

ball centered at xacc
i with radius ε. Let Varπ,n[·] denote the posterior variance conditioned on Fn that is

induced by π.
The proof of Proposition 2 is preceded by four technical results, i.e., Lemmas 5–8. In Lemmas 5 and 6, we

establish an upper bound on Varπ,n[θi(x)] for x ∈ B(xacc
i , ε). This result does not rely on the IKG policy

per se, but is implied by the existence of the accumulation pointxacc
i instead. In particular, the upper bound

which depends on ε can be made arbitrarily small as ε → 0. This basically means that in the light of an
unlimited number of samples of alternative i that are taken in proximity to xacc

i , the uncertainty about
θi(x

acc
i ) will eventually be eliminated, thanks to the correlation between θi(xacc

i ) and θi(x) for x near
xacc
i .
Lemma 7 asserts that IKGn(i,x) is bounded by a multiple of the posterior standard deviation of θi(x).

This implies that when the posterior variance approaches to zero, the IKG factor does too.
Following the last three lemmas, Lemma 8 asserts that the limit inferior of the IKG factor is zero. The

reasoning is as follows. By Lemmas 5 and 6, the posterior variance at those sampling locations that fall inside
B(xacc

i , ε) is small. Then, by Lemma 7, the IKG factor at these locations are also small, so does the limit
superior. Since the sampling locations inside B(xacc

i , ε) is a subsequence of the entire sampling locations,
the limit inferior of the IKG factor over all sampling locations is even smaller.

At last, Proposition 2 is proved by contradiction — if there is a location that the posterior variance does
not approach zero, then the limit inferior of the IKG factor at the same location must be positive as well.

Lemma 5. Fix i = 1, . . . ,M , n ≥ 1, and a compact set S ⊆ X . Suppose that the sampling decisions satisfy
a0 = · · · = an−1 = i and v0, . . . ,vn−1 ∈ S . If Assumptions 1–3 hold, then for all x ∈ S ,

Varn[θi(x)] ≤ τ2
i −

nminx′∈S
[
k0
i (x,x

′)
]2

nτ2
i + λmax

i

,

where λmax
i := maxx∈X λi(x) ∈ (0,∞).
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Proof of Lemma 5. Fix x ∈ S . First note that λmax
i is well defined under Assumptions 2 and 3. Let V n

i be the
set of the locations of the samples taken from θi up to time n. Under Assumption 1, eq. (4) reads

Varn[θi(x)] = τ2
i − k0

i (x,V
n
i )[k0

i (V
n
i ,V

n
i ) + λi(V

n
i )]−1k0

i (V
n
i ,x),

where V n
i = {v0, . . . ,vn−1} due to the assumption that a0 = · · · = an−1 = i.

For notational simplicity, letA := k0
i (V

n
i ,V

n
i ) + λi(V

n
i ) andB := k0

i (V
n
i ,V

n
i ) + λmax

i I . Note that
B −A = λmax

i I − λi(V n
i ) is a diagonal matrix with nonnegative elements, so it is positive semi-definite.

Since A and B are both positive definite, by Horn and Johnson (2012, Corollary 7.7.4), A−1 − B−1 is
positive semi-definite. Therefore,

k0
i (x,V

n
i )[k0

i (V
n
i ,V

n
i ) + λi(V

n
i )]−1k0

i (V
n
i ,x)− k0

i (x,V
n
i )[k0

i (V
n
i ,V

n
i ) + λmax

i I]−1k0
i (V

n
i ,x)

= k0
i (x,V

n
i )(A−1 −B−1)k0

i (V
n
i ,x) ≥ 0. (29)

It then follows from eqs. (4) and (29) that

Varn[θi(x)] ≤ τ2
i − k0

i (x,V
n
i )[k0

i (V
n
i ,V

n
i ) + λmax

i I]−1k0
i (V

n
i ,x).

Thus, it suffices to prove that

f(v0, . . . ,vn−1) := k0
i (x,V

n
i )[k0

i (V
n
i ,V

n
i ) + λmax

i I]−1k0
i (V

n
i ,x) ≥

nminx′∈S
[
k0
i (x,x

′)
]2

nτ2
i + λmax

i

, (30)

for all v0, . . . ,vn−1 ∈ S .

Since k0
i (V

n
i ,V

n
i ) is symmetric, we can always write k0

i (V
n
i ,V

n
i ) = Qdiag{α1, . . . , αn}Qᵀ, where

α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 are the eigenvalues of k0
i (V

n
i ,V

n
i ), and Q is an orthogonal matrix, i.e.,

QQᵀ = I . Therefore,

k0
i (V

n
i ,V

n
i ) + λmax

i I = Qdiag
{

(α1 + λmax
i ), . . . , (αn + λmax

i )
}
Qᵀ.

and
[k0
i (V

n
i ,V

n
i ) + λmax

i I]−1 = Qdiag
{

(α1 + λmax
i )−1, . . . , (αn + λmax

i )−1
}
Qᵀ.

If we let βj be the j-th element of the row vector k0
i (x,V

n
i )Q, i.e., k0

i (x,V
n
i )Q = [β1, . . . , βn], then

f(v0, . . . ,vn−1) =
β2

1

α1 + λmax
i

+ · · ·+ β2
n

αn + λmax
i

.

Here, αj and βj clearly both depend on v0, . . . ,vn−1, for j = 1, . . . , n. Moreover, they satisfy the following
two conditions. First,

∑n
j=1 αj = tr(k0

i (V
n
i ,V

n
i )) = nτ2

i , where the first equality is a straightforward fact
that the trace of a matrix equals the sum of its eigenvalues, and the second equality is from Assumption 1.
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Second,

n∑
j=1

β2
j = k0

i (x,V
n
i )QQᵀk0

i (V
n
i ,x) = k0

i (x,V
n
i )k0

i (V
n
i ,x) =

n−1∑
`=0

[k0
i (x,v

`)]2 ≥ n min
x′∈S

[k0
i (x,x

′)]2.

If we define g : R2n 7→ R as follows

g(a1, . . . , an, b1, . . . , bn) :=
b1

a1 + λmax
i

+ · · ·+ bn
an + λmax

i

,

then f(v0, . . . ,vn−1) = g(α1, . . . , αn, β
2
1 , . . . , β

2
n). It follows that

min
v0,...,vn−1∈S

f(v0, . . . ,vn−1) ≥ min
(a1,...,an)∈C1
(b1,...,bn)∈C2

g(a1, . . . , an, b1, . . . , bn), (31)

where

C1 :=

{
(a1, . . . , an) ∈ Rn : a1 ≥ · · · ≥ an ≥ 0 and

n∑
j=1

aj = nτ2
i

}
,

C2 :=

{
(b1, . . . , bn) ∈ Rn : b1 ≥ 0, . . . , bn ≥ 0 and

n∑
j=1

bj ≥ nmin
x′∈S

[k0
i (x,x

′)]2
}
.

The reason for the inequality in eq. (31) is that the two minimization problems have the same objective
function while the one in left-hand side has smaller feasible region.

We now solve the minimization problem on the right-hand side of eq. (31). Note that for any (a1, . . . , an) ∈
C1, min(b1,...,bn)∈C2 g(a1, . . . , an, b1, . . . , bn) is a linear programming problem, and it is easy to see that its
optimal solution is b∗1 = nminx′∈S [k0

i (x,x
′)]2 and b∗2 = · · · = b∗n = 0. Hence,

min
(a1,...,an)∈C1
(b1,...,bn)∈C2

g(a1, . . . , an, b1, . . . , bn) = min
(a1,...,an)∈C1

nminx′∈S [k0
i (x,x

′)]2

a1 + λmax
i

=
nminx′∈S [k0

i (x,x
′)]2

nτ2
i + λmax

i

.

(32)
Then, we can apply eqs. (31) and (32) to show eq. (30), completing the proof of Lemma 5.

Lemma 6. Fix i = 1, . . . ,M and a sampling policyπ. Suppose that the sequence of sampling locations {vn : an =

i, n = 0, 1, . . .} under π has an accumulation point xacc
i . If Assumptions 1–3 hold, then for any ε > 0,

lim sup
n→∞

max
x∈B(xacc

i ,ε)
Varπ,n[θi(x)] ≤ τ2

i

[
1− ρ2

i (2ε1)
]
,

where 1 is the vector of all ones with size d× 1.

Proof of Lemma 6. It follows from eq. (8) that {Varπ,n[θi(x)]}∞n=0 is a non-increasing sequence bounded
below by zero. Hence, Varπ,n[θi(x)] converges as n→∞ and its limit is well defined.

Fix ε > 0. Let si,n :=
∣∣{v` ∈ B(xacc

i , ε) : a` = i, ` = 0, . . . , n− 1}
∣∣ be the number of times that al-
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ternative i is sampled at a point in B(xacc
i , ε) under π among the total n samples. Then, we must have

si,n → ∞ since xacc
i is an accumulation point. Note that reordering the sampling decision-observation

pairs ((a0,v0), y1), . . . , ((an−1,vn−1), yn) does not alter the conditional variance of θi(x). Hence, we may
assume without loss of generality that the first si,n samples are all taken from alternative i at locations
that belong to B(xacc

i , ε). Since the posterior variance decreases in the number of samples by eq. (8), we
conclude that for all x ∈ B(xacc

i , ε),

Varπ,n[θi(x)] ≤ Varπ,si,n [θi(x)] ≤ τ2
i −

si,n minx′∈B(xacc
i ,ε)[k

0
i (x,x

′)]2

si,nτ2
i + λmax

i

, (33)

where the second inequality follows from Lemma 5.
Note that [k0(x,x′)]2 = τ4

i ρ
2
i (|x− x′|), and that ‖x− x′‖ ≤ ‖x− xacc

i ‖ + ‖xacc
i − x′‖ ≤ 2ε for all

x,x′ ∈ B(xacc
i , ε). Hence, each component of |x− x′| is no greater than 2ε. Since ρi(δ) is decreasing in δ

component-wise for δ > 0 (see Assumption 1), ρi(|x− x′|) ≥ ρi(2ε1) for all x,x′ ∈ B(xacc
i , ε). It then

follows from eq. (33) that

max
x∈B(xacc

i ,ε)
Varπ,n[θi(x)] ≤ τ2

i −
si,nτ

4
i ρ

2
i (2ε1)

si,nτ2
i + λmax

i

.

Sending n→∞ completes the proof.

Lemma 7. Fix i = 1, . . . ,M . If Assumptions 1–3 hold, then for all x ∈ X ,

IKGn(i,x) ≤

√
τ2
i Varn[θi(x)]

2πλi(x)c2
i (x)

.

Proof of Lemma 7. Notice that∫
X
E
[

max
1≤a≤M

µn+1
a (v)

∣∣∣Fn, an = i,vn = x

]
γ(v) dv

=

∫
X
En
[

max
1≤a≤M

(
µna(v) + σna (v,vn)Zn+1

) ∣∣∣ an = i,vn = x

]
γ(v) dv

≤
∫
X

max
1≤a≤M

µna(v)γ(v) dv +

∫
X
En
[

max
1≤a≤M

(
σna (v,vn)Zn+1

) ∣∣∣ an = i,vn = x

]
γ(v) dv . (34)

Since k0
i (x,x

′) is a continuous function by Assumption 1, it follows from Assumption 3 and the updating
eq. (3) that µni (x) is a continuous function for any n. Hence, µni (x) is bounded onX by Assumption 2. This
implies that the first integral in eq. (34) is finite and can be subtracted from both sides of the inequality.
Then, by the definition eq. (12),

IKGn(i,x) ≤ 1

ci(x)

∫
X
En
[

max
1≤a≤M

(
σna (v,vn)Zn+1

) ∣∣∣ an = i,vn = x

]
γ(v) dv := I. (35)

It follows from eq. (7) that

I =
1

ci(x)

∫
X
En
[
max

{
σnan(v,vn)Zn+1, 0

} ∣∣∣ an = i,vn = x
]
γ(v) dv
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=
1

ci(x)

∫
X
En
[
max

{
|σ̃ni (v,x)|Zn+1, 0

}]
γ(v) dv

=
1

ci(x)

∫
X
En
[
|σ̃ni (v,x)|Zn+1 I{|σ̃ni (v,x)|Zn+1>0}

]
γ(v) dv

=
1

ci(x)

∫
X
|σ̃ni (v,x)|

[∫ ∞
0

zφ(z) dz

]
γ(v) dv

=
1√

2πci(x)

∫
X
|σ̃ni (v,x)|γ(v)dv. (36)

Moreover, by eq. (7),

|σ̃ni (v,x)| =

∣∣∣∣∣ Covn[θi(v), θi(x)]√
Varn[θi(x)] + λi(x)

∣∣∣∣∣ ≤
√

Varn[θi(v)] Varn[θi(x)]

Varn[θi(x)] + λi(x)
≤

√
τ2
i Varn[θi(x)]

λi(x)
, (37)

where the last inequality follows because 0 ≤ Varn[θi(v)] ≤ Var[θi(v)] = τ2
i for all v ∈ X by eq. (8). The

proof is completed by combining eqs. (35)–(37).

Lemma 8. Fix i = 1, . . . ,M . If Assumptions 1–3 hold, and η∞i =∞ under the IKG policy, then for any x ∈ X ,

lim inf
n→∞

IKGn(i,x) = 0.

Proof of Lemma 8. Since X is compact by Assumption 2, the sequence {vn ∈ X : an = i, n = 0, 1, . . . , }
is bounded, and it is of length η∞i = ∞. Hence, it has an accumulation point xacc

i . Let {`i,n}∞n=0 be the
subsequence of {n : an = i, n = 0, 1, . . .} such that `i,n → ∞ and v`i,n → xacc

i as n → ∞. Fix ε > 0.
Then, by Lemma 6,

lim sup
n→∞

Varn[θi(v
`i,n)] ≤ τ2

i [1− ρ2
i (2ε1)].

It then follows from Lemma 7 that

lim sup
n→∞

IKG`i,n(i,v`i,n) ≤ lim sup
n→∞

√
τ2
i Var`i,n [θi(v`i,n)]

2πλi(x)c2
i (x)

≤

√
τ4
i [1− ρ2

i (2ε1)]

2πλi(x)c2
i (x)

.

By sending ε → 0, we have ρi(2ε1) → 1 and thus, lim supn→∞ IKG`i,n(i,v`i,n) ≤ 0. Since the limit
inferior of a sequence is no greater than that of its subsequence,

lim inf
n→∞

IKGn(i,vn) ≤ lim inf
n→∞

IKG`i,n(i,v`i,n) ≤ lim sup
n→∞

IKG`i,n(i,v`i,n) ≤ 0. (38)

Moreover, by the definition of IKG eq. (12) and Jensen’s inequality,

IKGn(i,x) ≥ 1

ci(x)

∫
X

{
max

1≤a≤M
E
[
µn+1
a (v)

∣∣∣Fn, an = i,vn = x
]
− max

1≤a≤M
µna(v)

}
γ(v) dv = 0,

for each i = 1, . . . ,M and x ∈ X , where the equality follows immediately from the updating eq. (5). This,
in conjunction with eq. (38), implies that lim infn→∞ IKGn(i,vn) = 0. By the definition of the sampling
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location vn in eq. (13), IKGn(i,vn) = maxx∈X IKGn(i,x). Hence, for any x ∈ X ,

0 ≤ lim inf
n→∞

IKGn(i,x) ≤ lim inf
n→∞

IKGn(i,vn) = 0, (39)

which completes the proof.

Before we prove Proposition 2, we need one more technical result about the almost sure convergence of
µni , which is stated in the following Lemma 9. A similar result is also given in Bect et al. (2019, Proposition
2.9), and the proof there directly applies here.

Lemma 9. If Assumptions 1–3 hold, then for all i = 1, . . . ,M , µni (x) converges to µ∞i (x) := E[θi(x)|F∞]

uniformly in x ∈ X a.s. as n→∞. That is,

P
{
ω : sup

x∈X
|µni (x;ω)− µ∞i (x;ω)| → 0

}
= 1.

Proof of Lemma 9. Fix i = 1, . . . ,M . Note that θi is a Gaussian process under the prior. It follows from
Assumptions 1 and 3 and Theorem 1.4.1 of Adler and Taylor (2007) that the sample paths of θi are continuous
a.s.. The proof is then completed by directly following the arguments in the proof of Proposition 2.9 in Bect
et al. (2019).

We are now ready to prove Proposition 2.

Proof of Proposition 2. Let µn := (µn1 , . . . , µ
n
M ) denote the posterior mean of (θ1, . . . , θM ) conditioned on

Fn. Let ω denote a generic sample path. Fix i = 1, . . . ,M . Define

Ω0 = {ω : η∞i (ω) =∞, µn(x;ω)→ µ∞(x;ω) uniformly in x ∈ X as n→∞}.

Then, P(Ω0) = 1 by the assumption of Proposition 2 and Lemma 9. Fix an arbitrary x ∈ X . We now prove
that, under the IKG policy,

k∞i (x,x;ω) = 0, for any ω ∈ Ω0, (40)

which establishes Proposition 2. We prove eq. (40) by contraction and assume that there exists some
ω0 ∈ Ω0 such that k∞i (x,x;ω) > 0. In the remaining proof, we suppress the sample path ω0 to simplify
notation.

It follows from the continuity of k0
i (x, ·) assumed in Assumption 1 and the updating eq. (4) that kni (x, ·)

is continuous. The uniform convergence of kni (x, ·) by Proposition 1 then implies that k∞i (x, ·) is also
continuous. Hence, there exist ε > 0 such that minv∈B(x,ε) k

∞
i (x,v) > 0. The uniform convergence of

kni (x, ·) further implies that there exists δ > 0 such that kni (x,v) ≥ δ for all v ∈ B(x, ε) and n ≥ 1. By
eq. (7),

inf
v∈B(x,ε),n≥1

σ̃ni (v,x) = [kni (x,x) + λi(x)]−1/2 inf
v∈B(x,ε),n≥1

kni (v,x)

≥ δ[k0
i (x,x) + λi(x)]−1/2 := α1 > 0.
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Let g(s, t) := tφ(s/t) − sΦ(−s/t); see Lemma 2 for properties of g(s, t), including positivity and
monotonicity. Then,

|σ̃ni (v,x)|φ
(∣∣∣∣ ∆n

i (v)

σ̃ni (v,x)

∣∣∣∣)− |∆n
i (v)|Φ

(
−
∣∣∣∣ ∆n

i (v)

σ̃ni (v,x)

∣∣∣∣) = g(|∆n
i (v)|, |σ̃ni (v,x)|) ≥ 0,

for all v ∈ X . Consequently, Lemma 1 implies that

IKGn(i,x) ≥ 1

ci(x)

∫
B(x,ε)

g(|∆n
i (v)|, |σ̃ni (v,x)|)γ(v) dv ≥ 1

ci(x)

∫
B(x,ε)

g(|∆n
i (v)|, α1)γ(v)dv,

for all n ≥ 1, where the second inequality holds because g(s, t) is strictly increasing in t ∈ (0,∞). Note
that lim infn→∞ IKGn(i,x) = 0 by Lemma 8. Hence,

0 ≥ lim inf
n→∞

1

ci(x)

∫
B(x,ε)

g(|∆n
i (v)|, α1)γ(v)dv ≥ 1

ci(x)

∫
B(x,ε)

lim inf
n→∞

g(|∆n
i (v)|, α1)γ(v)dv, (41)

where the second inequality holds due to Fatou’s lemma. Furthermore, since for any v ∈ X , ∆n
i (v) =

µni (v)−maxa6=i µna(v), and µna(v)→ µ∞a (v) for a = 1, . . . ,M , where |µ∞a (v)| <∞. then

lim sup
n→∞

|∆n
i (v)| ≤ lim sup

n→∞
[2 max

a
|µna(v)|] = 2 max

a
|µ∞a (v)| := α2(v) <∞,

for all v ∈ B(x, ε). Then, in the light of eq. (41) and the fact that g(s, t) is strictly decreasing in s ∈ [0,∞),

0 ≥ 1

ci(x)

∫
B(x,ε)

lim inf
n→∞

g(|∆n
i (v)|, α1)γ(v) dv ≥ 1

ci(x)

∫
B(x,ε)

g(α2(v), α1)γ(v) dv .

This contracts the fact that g(s, t) > 0 for all s ∈ [0,∞) and t ∈ (0,∞). Therefore, eq. (40) is proved.

D. Proof of Proposition 3

Let Sn := (µn1 , . . . , µ
n
M , k

n
1 , . . . , k

n
M ) denote the state at time n, which fully determines the posterior

distribution of (θ1, . . . , θM ) conditioned on Fn. The state transition Sn → Sn+1 is governed by eqs. (5)
and (6), which is determined by the sampling decision (an,vn).

Let s := (µ1, . . . , µM , k1, . . . , kM ) ∈ S be a generic state and S denote the set of states for which µi is a
continuous function and ki is a continuous covariance function for each i = 1, . . . ,M . For s ∈ S, define

V (s) :=

∫
X

max
1≤a≤M

µa(v)γ(v)dv,

and
Q(s, i,x) := E[V (Sn+1) |Sn = s, an = i,vn = x].
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By the following Lemma 10, it is easy to see that at time n, the IKG policy (13) chooses

argmax
1≤i≤M,x∈X

[ci(x)]−1[Q(Sn, i,x)− V (Sn)]. (42)

Lemma 10. Fix s ∈ S, i = 1, . . . ,M , and x ∈ X whereX is compact,

Q(s, i,x) =

∫
X
E
[

max
1≤a≤M

µn+1
a (v)

∣∣∣Sn = s, an = i,vn = x

]
γ(v)dv.

Proof of Lemma 10. Notice that by the updating eq. (5), given Sn = s, an = i, vn = x and Zn+1,

max
1≤a≤M

µn+1
a (v) = max

{
µi(v) + σ̃i(v,x)Zn+1,max

a6=i
µa(v)

}
.

Let f
(
s, i,x,v, Zn+1

)
= max1≤a≤M µn+1

a (v) − maxa6=i µa(v). Then f
(
s, i,x,v, Zn+1

)
≥ 0, for all

v ∈ X and Zn+1. Hence,

Q(s, i,x) = E
[∫
X

max
1≤a≤M

µn+1
a (v)γ(v)dv

∣∣∣Sn = s, an = i,vn = x

]
= E

[∫
X

(
f
(
s, i,x,v, Zn+1

)
+ max

a6=i
µa(v)

)
γ(v) dv

]
= E

[∫
X
f
(
s, i,x,v, Zn+1

)
γ(v) dv

]
+

∫
X

max
a6=i

µa(v)γ(v) dv

=

∫
X
E
[
f
(
s, i,x,v, Zn+1

)]
γ(v) dv +

∫
X

max
a6=i

µa(v)γ(v) dv ,

where the interchange of integral and expectation is justified by Tonelli’s theorem for nonnegative functions,
and

∫
X maxa6=i µa(v)γ(v) dv is finite since µi(v) is continuous on the compact set X for i = 1, . . . ,M .

Thus the result in Lemma 10 follows immediately.

Lemma 11. Fix s ∈ S, i = 1, . . . ,M , and x ∈ X where X is compact and α(·) > 0 on X . Then,Q(s, i,x) ≥
V (s) and the equality holds if and only if ki(x,x) = 0.

Proof of Lemma 11. Applying Lemma 10 and the updating eq. (5),

Q(s, i,x) =

∫
X
E
[
max

{
µi(v) + σ̃i(v,x)Zn+1,max

a6=i
µa(v)

}]
γ(v) dv

≥
∫
X

max

{
E
[
µi(v) + σ̃i(v,x)Zn+1

]
,max
a6=i

µa(v)

}
γ(v)dv (43)

=

∫
X

max
1≤a≤M

µa(v)γ(v)dv = V (s),

where eq. (43) follows from Jensen’s inequality since max(·, ·) is a strictly convex function.
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If ki(x,x) = 0, then in the light of the fact that ki is a covariance function, we must have that

|ki(v,x)| ≤
√
ki(v,v)ki(x,x) = 0,

so ki(v,x) = 0 for all v ∈ X . Hence, σ̃ni (v,x) = 0 by eq. (7), so µn+1
a (v) = µna(v) for all a = 1, . . . ,M

and v ∈ X . Hence, µn+1
a (v) is deterministic given Sn for all a = 1, . . . ,M and v ∈ X . Thus, the inequality

eq. (43) holds with equality.
Next, assume conversely that Q(s, i,x) = V (s). If ki(x,x) 6= 0, then the continuity of ki implies that

ki(v,x) 6= 0 for all v ∈ X̃ , where X̃ ⊂ X is an open neighborhood of x. Without loss of generality, we
assume that for all v ∈ X̃ , ki(v,x) > 0 and thus, σ̃i(v,x) = ki(v,x)/

√
ki(x,x) + λi(x) > 0. By the

strict convexity of max(·, ·) and Jensen’s inequality,

E
[
max

{
µi(v) + σ̃i(v,x)Zn+1,max

a6=i
µa(v)

}]
> max

{
E
[
µi(v) + σ̃i(v,x)Zn+1

]
,max
a6=i

µa(v)

}
,

for v ∈ X̃ . Hence, eq. (43) becomes a strict inequality since γ(v) > 0 for all v ∈ X . This contradicts
Q(s, i,x) = V (s), so ki(x,x) = 0.

Lemma 12. Fix i = 1, . . . ,M . If Assumptions 1 and 3 hold, and k∞i (x,x) = 0 for some x ∈ X , then η∞i =∞.

Proof of Lemma 12. We prove by contradiction and assume that η∞i < ∞. Then, Ni := min{n : ηni =

η∞i } <∞ and an 6= i for all n ≥ Ni. Due to the mutual independence between the alternatives, it follows
that the posterior distribution of θi remains the same for n ≥ Ni. In particular, kni (x,x) = kNii (x,x) for
all n > Ni. Hence, kNii (x,x) = k∞i (x,x) = 0. It follows from eq. (6) that

kNi−1
i (x,x) = kNii (x,x) +

[
σNi−1
i (x,vNi−1)

]2
=
[
σNi−1
i (x,vNi−1)

]2
.

By the definition of Ni, aNi−1 = i. Then by eq. (7),

kNi−1
i (x,x) =

[
kNi−1
i (x,vNi−1)

]2

kNi−1
i (vNi−1,vNi−1) + λi(vNi−1)

. (44)

Notice that
[kNi−1
i (x,vNi−1)]2 =

{
CovNi−1

[
θi(x), θi(v

Ni−1)
]}2

≤ VarNi−1[θi(x)] VarNi−1[θi(v
Ni−1)]

= kNi−1
i (x,x)kNi−1

i (vNi−1,vNi−1). (45)

It follows from eqs. (44) and (45) thatλi(vNi−1)kNi−1
i (x,x) ≤ 0. Thus, kNi−1

i (x,x) = 0, sincekNi−1
i (x,x) ≥

0 and λi(vNi−1) > 0 in Assumption 3. By induction, we can conclude that k0
i (x,x) = 0, which contracts

the fact that k0
i (x,x) = τ2

i > 0 in Assumption 1. Therefore, we must have η∞i =∞.

We are now ready to prove Proposition 3.
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Proof of Proposition 3. Define Ω1 := {ω : Sn(ω) → S∞(ω) pointwise as n → ∞}. By Lemma 9 and
Proposition 1, P(Ω1) = 1. For any i = 1, . . . ,M , define the event Hi := {ω : η∞i (ω) < ∞}. Then,
k∞i (x,x;ω) > 0 for all x ∈ X and ω ∈ Hi by Lemma 12. On the other hand, Proposition 2 implies that
k∞i (x,x;ω) = 0 for all x ∈ X and ω ∈ Hc

i ∩ Ω1, where Hc
i is the complement of Hi. Thus, by Lemma 11,

Q(S∞(ω), i,x) > V (S∞(ω)), for all ω ∈ Hi ∩ Ω1,

Q(S∞(ω), i,x) = V (S∞(ω)), for all ω ∈ Hc
i ∩ Ω1.

(46)

Further, for any subset A ⊆ {1, . . . ,M}, define the event

HA := {∩i∈AHi} ∩ {∩i/∈AHc
i}.

Choose any A 6= ∅. When A = {1, . . . ,M}, HA = ∅, because it is impossible that all alternative have
finite samples while n → ∞. So HA ∩ Ω1 = ∅. When A 6= {1, . . . ,M}, we prove HA ∩ Ω1 = ∅ by
contradiction. Suppose that HA ∩Ω1 6= ∅ so that we can choose and fix a sample path ω0 ∈ HA ∩Ω1. Then,
η∞i (ω0) <∞ for all i ∈ A. Hence, there exists Ti(ω0) <∞ for all i ∈ A such that the IKG policy does not
choose alternative i for n > Ti(ω0). Let T (ω0) := maxi∈A Ti(ω0). Then, T (ω0) <∞ and the IKG policy
does not choose i ∈ A for n > T (ω0). On the other hand, it follows from eq. (46) that for all i ∈ A, i′ /∈ A,
and x ∈ X ,

Q(S∞(ω0), i,x)− V (S∞(ω0)) > Q(S∞(ω0), i′,x)− V (S∞(ω0)) = 0.

Let Q†(s, i,x) := Q(s, i,x) − V (s) for simplicity. Then, by virtue of the compactness of X and the
positivity of ci(x),

max
x∈X

[ci(x)]−1Q†(S∞(ω0), i,x) > max
x∈X

[ci′(x)]−1Q†(S∞(ω0), i′,x) = 0,

for all i ∈ A and i′ /∈ A. Hence,

min
i∈A

max
x∈X

[ci(x)]−1Q†(S∞(ω0), i,x) > max
i′ /∈A

max
x∈X

[ci′(x)]−1Q†(S∞(ω0), i′,x) = 0. (47)

Notice that Sn(ω0)→ S∞(ω0) pointwise as n→∞ since ω0 ∈ Ω1. Hence, there exists a finite number
ñ(ω0) > T (ω0) such that

min
i∈A

max
x∈X

[ci(x)]−1Q†(Sñ(ω0)(ω0), i,x) > max
i′ /∈A

max
x∈X

[ci′(x)]−1Q†(Sñ(ω0)(ω0), i′,x),

which implies that IKG policy must choose alternative i ∈ A at time ñ(ω0) by eq. (42). This contradicts the
definition of T (ω0). Therefore, the event HA ∩ Ω1 must be empty for any nonempty A ⊆ {1, . . . ,M}.

It then follows immediately that P(HA) = 0 for any nonempty A ⊆ {1, . . . ,M}, since P(Ω1) = 1.
Notice that the whole sample space Ω = ∪A⊆{1,...,M}HA. Hence,

1 = P(H∅) = P
(
∩Mi=1H

c
i

)
= P ({ω : η∞i =∞ for all i = 1, . . . ,M}),
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which completes the proof.

E. Proof of Theorem 2

Part (i) is an immediate consequence of Propositions 2 and 3. The other two parts follow closely the proof
of similar results in Theorem 1 of Xie et al. (2016).

For part (ii), fix an arbitrary x ∈ X . Note that for each i = 1, . . . ,M ,

E[(µni (x)− θi(x))2] = E[En[(µni (x)− θi(x))2]] = E[kni (x,x)]→ E[k∞i (x,x)] = 0,

as n→∞, where the convergence holds due to the fact that 0 ≤ kni (x,x) ≤ k0
i (x,x) from eq. (8) and the

dominated convergence theorem. This asserts that µni (x)→ θi(x) in L2. By Lemma 9, µni (x)→ µ∞i (x)

a.s., which implies that θi(x) = µ∞i (x) a.s., due to the a.s. uniqueness of convergence in probability. Thus,
µni (x)→ θi(x) a.s. as n→∞.

For part (iii), let us again fix x ∈ X . Let i∗(x) ∈ argmaxi θi(x). We now show that argmaxi µ
n
i (x)→

i∗(x) a.s. as n → ∞. Again, we let ω denote a generic sample path and use notations like i∗(x;ω) to
emphasize the dependence on ω. Let ε(x;ω) := θi∗(x,ω)(x;ω) − maxa6=i∗(x,ω) θa(x;ω). Then, P({ω :

ε(x;ω) > 0}) = 1 because (θ1(x;ω), . . . , θM (x;ω)) is a realization of a multivariate normal random vari-
able under the prior distribution. Hence, the event Ω̃ := {ω : ε(x;ω) > 0 and µni (x;ω)→ θi(x;ω) for all
i = 1, . . . ,M} occurs with probability 1. Fix an arbitrary ω̃ ∈ Ω̃. To complete the proof, it suffices to show
that argmaxi µ

n
i (x; ω̃)→ i∗(x; ω̃) as n→∞.

Clearly, there exists N(ω̃) < ∞ such that |µni (x; ω̃)− θi(x; ω̃)| < ε(x; ω̃)/2 for all n > N(ω̃) and
i = 1, . . . ,M . Hence, for all i 6= i∗(x; ω̃) and n ≥ N(ω̃),

µni∗(x;ω̃)(x; ω̃) > θi∗(x;ω̃)(x; ω̃)− ε(x; ω̃)

2
≥ θi(x; ω̃) +

ε(x; ω̃)

2
> µni (x; ω̃).

This implies that i∗(x; ω̃) = argmaxi µ
n
i (x; ω̃) for all n > N(ω̃), and thus argmaxi µ

n
i (x; ω̃)→ i∗(x; ω̃)

as n→∞.

F. Proof of Theorem 3

The steps to prove Theorem 3 are exactly the same to those for Theorem 2, and we only need to modify the
arguments related to the actual sampling decision (which is (an,vn) satisfies eq. (13) in the IKG policy, and
(ãn, ṽn) satisfies eq. (15) in the quasi-IKG policy). So, we will not repeat the entire proofs, but only point
out the modification briefly. Specifically, the two main steps to prove Theorem 3 are summarized as the
following Propositions 4 and 5, which are parallel to Propositions 2 and 3.

Proposition 4. Fix i = 1, . . . ,M . If Assumptions 1–3 hold and η∞i =∞ a.s., then for anyx ∈ X , k∞i (x,x) = 0

a.s. under the quasi-IKG policy.

Proof of Proposition 4. All the intermediate lemmas for Proposition 2 directly apply to Proposition 4, ex-
cept for Lemma 8. Instead, we now need to show that under the quasi-IKG policy, for any x ∈ X ,
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lim infn→∞ IKGn(i,x) = 0. We first observe that, for the sequence {ṽn ∈ X : ãn = i, n = 0, 1, . . . , },
we can still show lim infn→∞ IKGn(i, ṽn) = 0 with the same arguments. Then, by the definition of the
quasi-IKG policy (15),

IKGn(i, ṽn) = IKGn(ãn, ṽn) ≥ IKGn(an,vn)− εn ≥ IKGn(i,vn)− εn.

On the other hand, since IKGn(i,vn) = maxx∈X IKGn(i,x), then for any x ∈ X , eq. (39) is replaced by

0 ≤ lim inf
n→∞

IKGn(i,x) ≤ lim inf
n→∞

IKGn(i,vn) ≤ lim inf
n→∞

[IKGn(i, ṽn) + εn] = 0,

where the equality is due to lim infn→∞ IKGn(i, ṽn) = 0 and εn → 0. Finally, the proof of Proposition 4
follows the similar arguments as in the proof of Proposition 2.

Proposition 5. If Assumptions 1–3 hold, then η∞i =∞ a.s. for each i = 1, . . . ,M under the quasi-IKG policy.

Proof of Proposition 5. All the intermediate lemmas for Proposition 3 directly apply to Proposition 5. We
then proceed by following the same arguments as in the proof Proposition 3, with Ti(ω0) meaning that the
quasi-IKG policy does not choose alternative i for n > Ti(ω0). After we obtain eq. (47), we now want to
show that quasi-IKG policy must choose alternative i ∈ A at some time ñ(ω0) > T (ω0), which leads to the
contradiction.

Due to eq. (47), there exists some small ∆ > 0 such that

min
i∈A

max
x∈X

[ci(x)]−1Q†(S∞(ω0), i,x)−∆ > max
i′ /∈A

max
x∈X

[ci′(x)]−1Q†(S∞(ω0), i′,x) = 0.

Notice that Sn(ω0)→ S∞(ω0) pointwise as n→∞ since ω0 ∈ Ω1. Hence, there exists a finite number
ñ1(ω0) > T (ω0) such that

min
i∈A

max
x∈X

[ci(x)]−1Q†(Sn, i,x)−∆/2 > max
i′ /∈A

max
x∈X

[ci′(x)]−1Q†(Sn, i′,x), (48)

for all n ≥ ñ1(ω0). Since εn → 0 as n → ∞, there exists a finite number ñ2(ω0) > T (ω0) such that
εn < ∆/2 for alln ≥ ñ2(ω0). Then, we can conclude that at time ñ(ω0) := max(ñ1(ω0), ñ2(ω0)) > T (ω0),
quasi-IKG policy must choose alternative i ∈ A. Otherwise, for n = ñ(ω0), if ãn /∈ A, then by eqs. (42)
and (48),

IKGn(ãn, ṽn) < IKGn(an,vn)−∆/2 < IKGn(an,vn)− εn,

which violates the definition of quasi-IKG policy defined in eq. (15).

G. Gradient Calculation

It is easy to see that

gni (v,x) =
∂[hni (v,x)/ci(x)]

∂x
=

∂hni (v,x)
∂x ci(x)− hni (v,x)dci(x)

dx

[ci(x)]2
,
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∂hni (v,x)

∂x
=


φ
(∣∣∣ ∆n

i (v)
σ̃ni (v,x)

∣∣∣)∂σ̃ni (v,x)
∂x , if σ̃ni (v,x) > 0,

0, if σ̃ni (v,x) = 0,

−φ
(∣∣∣ ∆n

i (v)
σ̃ni (v,x)

∣∣∣)∂σ̃ni (v,x)
∂x , if σ̃ni (v,x) < 0,

and that, by the definition of σ̃ni (v,x) in eq. (7) and Assumptions 1 and 3,

∂σ̃ni (v,x)

∂x
= [kni (x,x)+λi(x)]−

1
2
∂kni (v,x)

∂x
− [kni (x,x) + λi(x)]−

3
2kni (v,x)

2

[
dkni (x,x)

dx
+

dλi(x)

dx

]
,

(49)
provided that the prior correlation function ρi and the cost function ci are both differentiable. Assuming
ρi to be differentiable excludes some covariance functions that satisfy Assumption 1 such as the Matérn(ν)

type with ν = 1/2, but many others including both the Matérn(ν) type with ν > 1 and the SE type do have
the desired differentiability. We next calculate analytically the derivatives of kni (·, ·) in eq. (49) for several
common covariance functions. The calculation is a routine exercise so we omit the details.

Throughout the subsequent Examples 1–3, we use the following notation. For i = 1, . . . ,M ,

αi := (αi,1, . . . , αi,d)
ᵀ and ri(x,x

′) :=

√√√√ d∑
j=1

αi,j(xj − x′j)2.

Recall that V n
i denotes the set of locations of the samples taken from θi up to time n. With slight abuse of

notation, here we treat V n
i as a matrix wherein the columns are corresponding to the points in the set and

arranged in the order of appearance. Moreover, for notational simplicity, let V n
i := (v1, . . . ,vmni ), where

mn
i is the number of columns of V n

i . LetX be a matrix with the same dimension as V n
i and all columns

are identically x. We adopt the denominator layout for matrix calculus. For the following Examples 1–3, it
can be shown that

∂kni (v,x)

∂x
= diag(αi)(x− v)a0 −Ak0

i (V
n
i ,v), (50)

dkni (x,x)

dx
= −2Ak0

i (V
n
i ,x), (51)

where
A := diag(αi)(X − V n

i )diag{a1, . . . , amni }[k
0
i (V

n
i ,V

n
i ) + λiI]−1,

while the values of a0, a1, . . . , amni depend on the choice of the covariance function.

Example 1 (SE). Let k0
i (x,x

′) = τ2
i exp

(
−r2

i (x,x
′)
)

. Then, in eqs. (50) and (51), a0 := −2k0
i (v,x) and

a` := −2k0
i (v`,x), for ` = 1, . . . ,mn

i .

Example 2 (Matérn(3/2)). Let k0
i (x,x

′) = τ2
i

(
1 +
√

3ri(x,x
′)
)

exp
(
−
√

3ri(x,x
′)
)

. Then, in eqs. (50)
and (51),

a` :=
√

3r−1
i (v`,x)

[
τ2
i exp

(
−
√

3ri(v`,x)
)
− k0

i (v`,x)
]
,

for ` = 0, 1, . . . ,mn
i and v0 = v.
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Example 3 (Matérn(5/2)). Let k0
i (x,x

′) = τ2
i

(
1 +
√

5ri(x,x
′) + 5

3r
2
i (x,x

′)
)

exp
(
−
√

5ri(x,x
′)
)

. Then,
in eqs. (50) and (51),

a` :=
(√

5r−1
i (v`,x) + 10

3

)
τ2
i exp

(
−
√

5ri(v`,x)
)
−
√

5r−1
i (v`,x)k0

i (v`,x),

for ` = 0, 1, . . . ,mn
i and v0 = v.

H. Implementation Issues

A plain-vanilla implementation of ÎKG
n
(i,x) in eq. (18) may encounter rounding errors, since hni (ξj ,x)

may be rounded to zero when evaluated via eq. (16); see Frazier et al. (2009) for discussion on a similar issue.
To enhance numerical stability, we first evaluate the logarithm of the summand and then do exponentiation.
For notational simplicity, we set

uj := |∆n
i (ξj)/σ̃

n
i (ξj ,x)| and hni (ξj ,x) = |σ̃ni (ξj ,x)|[φ(uj)− ujΦ(−uj)].

If σ̃ni (ξj ,x) 6= 0, we compute

gj := log

(
hni (ξj ,x)

J

)
= log

(
|σ̃ni (ξj ,x)|√

2πJ

)
− 1

2
u2
j + log

(
1− uj

Φ(−uj)
φ(uj)

)
,

where Φ(−uj)/φ(uj) is known as the Mills ratio, and can be asymptotically approximated byuj/(u2
j+1) for

large uj . Moreover, log (1 + x) can be accurately computed by log1p function available in most numerical
software packages. At last, we compute

log ÎKG
n
(i,x) = log

∑
j∈J

egj − log(ci(x)) = g∗ + log
∑
j∈J

egj−g
∗ − log(ci(x)),

where J := {j : σ̃ni (ξj ,x) 6= 0, j = 1, . . . , J}, and g∗ = maxj∈J gj ; we set log ÎKG
n

γ (i,x) = −∞ if J is
empty. The above procedure is summarized in Algorithm 1.

In the implementation of SGA, we adopt two well-known modifications.

(i) We use mini-batch SGA to have more productive iterations. Specifically, in each iteration eq. (19),
instead of using a single gni (ξk,xk) as the gradient estimate, we use the average of m independent
estimates gni (ξk1,xk), . . . , g

n
i (ξkm,xk), which is denoted as ḡni (ξk1, . . . , ξkm,xk).

(ii) We adopt the Polyak-Ruppert averaging (Polyak and Juditsky 1992) to mitigate of the algorithm’s
sensitivity on the choice of the step size. Specifically, when K iterations are completed, we report

1
K+2−K0

∑K+1
k=K0

xk, instead of xK+1, as the approximated solution of vni , where 1 ≤ K0 ≤ K is a
pre-specified integer.

Upon computing v̂ni ≈ argmaxx IKGn(i,x) with SGA for each i, we set

ân = argmax
1≤i≤M

log ÎKG
n
(i, v̂ni ) and v̂n = v̂nân ,
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Algorithm 1 Computing log ÎKG
n
(i,x).

Inputs: µn1 , . . . , µnM , k
n
1 , . . . , k

n
M , λ1, . . . , λM , ξ1, . . . , ξJ , i,x, ci(x)

Outputs: log IKG
1: J ← ∅, log IKG← −∞
2: for j = 1 to J do
3: if |σ̃ni (ξj ,x)| > 0 then
4: u← |∆n

i (ξj)|/|σ̃ni (ξj ,x)|
5: if u < 20 then
6: r ← Φ(−u)/φ(u)
7: else
8: r ← u/(u2 + 1)
9: end if

10: gj ← log

(
|σ̃n

i (ξj ,x)|√
2πJ

)
− 1

2
u2 + log1p(−ur) . log1p(x) = log(1 + x).

11: J ← {J , j}
12: end if
13: end for
14: if J 6= ∅ then
15: g∗ ← maxj∈J gj
16: log IKG← g∗ + log

∑
j∈J e

gj−g∗ − log(ci(x))

17: end if

Algorithm 2 Approximately Computing (an,vn) Using SGA.
Inputs: µn1 , . . . , µnM , k

n
1 , . . . , k

n
M , λ1, . . . , λM , ξ1, . . . , ξJ , c1, . . . , cM

Outputs: ân, v̂n
1: for i = 1 toM do
2: x1 ← initial value
3: for k = 1 toK do
4: Generate independent sample {ξk1, . . . , ξkm} from density γ(·)
5: xk+1 ← ΠX [xk + bkḡ

n
i (ξk1, . . . , ξkm,xk)] .Mini-batch SGA.

6: end for
7: v̂ni ← 1

K+2−K0

∑K+1
k=K0

xk . Polyak-Ruppert averaging.

8: log IKGi← log ÎKG
n
(i, v̂ni ) . Call Algorithm 1.

9: end for
10: ân ← argmaxi log IKGi
11: v̂n ← v̂nân

to be the sampling decision at time n, i.e., let (ân, v̂n) be the computed solution for (an,vn) under the IKG
policy. The complete procedure is summarized in Algorithm 2.

I. Additional Numerical Experiments

Computational cost comparison

We conduct simple experiment to compare the computational cost when the IKG sampling policy defined
in eq. (13), i.e., (an,vn) ∈ argmax1≤i≤M,x∈X IKGn(i,x), is solved purely using sample average approxi-
mation (SAA) method or our proposed SGA (together with SAA). For IKG with SGA, here refer to as method
1, as described in Section 5, the computation of eq. (13) consists of two steps. Step (i) is to solve vni =

maxx∈X IKGn(i,x) for all i = 1, . . . ,M with SGA, and step (ii) is to solvean = argmax1≤i≤M IKGn(i,vni )

with SAA. For IKG with pure SAA, here refer to as method 2, the problems in the above two steps are both
solved with SAA. In particular, the problem in step (i) is converted into a continuous deterministic optimiza-
tion after applying SAA, which is solved directly using the fmincon solver in MATLAB. It is expected that for
either method, the computational cost will increase as the dimensionality d increases. But to evaluate the
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exact value of the computational cost, one needs to know the true optimal solution of eq. (13) and control
the optimality gap when a specific method is used. Here we simply compare the relative computational
cost of two methods by roughly controlling the resulting OC at the same level.

The same problem in Section 5 is considered and we let the dimensionality d increase from 1 to 7. The
density function of covariates is the uniform distribution and the cost function is constantly 1. All the
parameters for the problem, the IKG with SGA (i.e., method 1) and the evaluation of OC are the same as
before. For each d, the sampling policy under the two methods is carried out respectively until the budget
B = 100 is exhausted, and the ÔC(B) curves are obtained. For fair comparison, we let the step (ii) of
method 2 be exactly the same (i.e., same sample used) as that of method 1, and tune the sample size in
step (i) of method 2 as follows. We gradually increase the sample size of random covariates used in SAA
(not the number of samples from alternatives), until the resulting ÔC(B) curve from method 2 is roughly
comparable to that from method 1. Note that for either method the computation time needs to solve eq. (13)
depends on the number of samples allocated to each alternative so far, and will increase as the samples
accumulate. So, we report the total computation time spent on solving eq. (13) during the entire sampling
process (until the budget B = 100 is exhausted, which means eq. (13) is solved for 100 times), averaged on
L = 30 replications, for the two methods, which are denoted as T1(d) and T2(d) respectively.

The following Figure 4 shows the comparison between methods 1 and 2. Left panel of Figure 4 shows the
sample sizes of random covariates used to approximately solve vni = maxx∈X IKGn(i,x) for each i in step
(i) by the two methods, which are denoted as N1(d) and N2(d) respectively. Note that N1(d) = mK =

20d× 100d = 2000d2 as specified, and N2(d) is tuned so that the performance of method 2 matches that
of method 1. Right panel of Figure 4 shows the computation times T1(d) and T2(d) (in MATLAB, Windows
10 OS, 3.60 GHz CPU, 16 GB RAM). It can be seen that IKG with SGA (i.e., method 1) scales much better in
dimensionality d than IKG with pure SAA (i.e., method 2). Recall that for each method, the sample size of
covariates in step (ii) is set as 500d2. So, even consider the fact that in method 2 the function approximation
in step (i) can be directly used in step (ii), which saves the sample of covariates and the relevant computation
in step (ii), the entire sample size and the computation time of method 2 still grows much faster than
method 1.

Figure 4: Computational cost comparison between SGA and SAA.

1 2 3 4 5 6 7

0

1

2

3

4

·105

d

S
a
m
p
le

S
iz
e

N1(d)

N2(d)

1 2 3 4 5 6 7

0

2

4

6

·103

d

C
o
m
p
u
ta
ti
o
n
T
im

e
(s
ec
.)

T1(d)

T2(d)



Online Appendix to Ding et al.: Technical Note—Knowledge Gradient for Selection with Covariates: Consistency and Computation 21

Estimated sampling variance

In practice, the sampling variance λi(x) is usually unknown and needs to be estimated. We suggest to
follow the approach in Ankenman et al. (2010). Specifically, for each alternative i, at some predetermined
design points x1, . . . ,xm, multiple simulations are run and the sample variances are computed, which are
denoted as s2

i (x
1), . . . , s2

i (x
m). Then ordinary kriging (i.e., Gaussian process interpolation) is used to fit

the entire surface of λi(x). Under the Bayesian viewpoint, it is equivalent to impose a Gaussian process
with constant mean function µ0

i (x) ≡ µ0
i and covariance function k0

i (x,x
′) as prior of λi(x), and compute

the posterior mean function by ignoring the sampling variance at the design points, i.e.,

µmi (x) = µ0
i + k0

i (x,Xi)k
0
i (Xi,Xi)

−1[yi − µ0
i I],

whereXi := (x1, . . . ,xm) and yi := (s2
i (x

1), . . . , s2
i (x

m))ᵀ. Then, µmi (x) is used as estimate of λi(x),
and the IKG policy is applied as if λi(x) was known. In ordinary kriging, µ0

i and the parameters in k0
i (x,x

′)

are usually optimized via maximum likelihood estimation (MLE).
We again consider the problem in Section 5. To better investigate the effect of estimating λi(x), we

consider two sampling variance: (1) λi(x) ≡ 0.01, as before; (2) λi(x) = 0.01 × (1.5d−1 + θi(x)). The
density function of covariates is the uniform distribution and the cost function is constantly 1. All the other
parameters for the problem are the same as before. The prior for estimating λi(x) is directly set as µ0

i = 0,
and k0

i (x,x
′) = exp

(
−1
d‖x− x

′‖2
)

, without invoking the MLE. The design points are generated by Latin
hypercube sampling and the same design points are used for each i. All the parameters for the IKG policy
and the evaluation of OC are the same as before. The following Figure 5 shows the estimated opportunity
cost when the sampling variance is known or estimated using the above approach, for the case of d = 1

or 3 and sampling variance (1) or (2). Numerical results show that the effect of estimating the sampling
variance is minor for this problem, which agrees with the observation in Ankenman et al. (2010).
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Figure 5: Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis).
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