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Abstract
Knowledge gradient is a design principle for developing Bayesian sequential sam-

pling policies to solve optimization problems. In this paper, we consider the ranking

and selection problem in the presence of covariates, where the best alternative is

not universal but depends on the covariates. In this context, we prove that under

minimal assumptions, the sampling policy based on knowledge gradient is consis-

tent, in the sense that following the policy the best alternative as a function of the

covariates will be identified almost surely as the number of samples grows. We also

propose a stochastic gradient ascent algorithm for computing the sampling policy

and demonstrate its performance via numerical experiments.
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1 INTRODUCTION

We consider the ranking and selection (R&S) problem in the

presence of covariates. A decision maker is presented with

a finite collection of alternatives. The performance of each

alternative is unknown and depends on the covariates. Sup-

pose that the decision maker has access to noisy samples of

each alternative for any chosen value of the covariates, but

the samples are expensive to acquire. Given a finite sampling

budget, the goal is to develop an efficient sampling policy

indicating locations as to which alternative and what value

of the covariates to sample from, so that upon termination of

the sampling, the decision maker can identify a decision rule

that accurately specifies the best alternative as a function of

the covariates.

The problem of R&S with covariates emerges naturally as

the popularization of data and decision analytics in recent

years. In clinical and medical research, for many diseases

the effect of a treatment may be substantially different across

patients, depending on their biometric characteristics (i.e.,

the covariates), including age, weight, lifestyle habits such

as smoking and alcohol use, and so forth (Kim et al., 2011).

A treatment regime that works for a majority of patients

might not work for the others. Samples needed for estimat-

ing treatment effects may be collected from clinical trials or

computer simulation. For example, in Hur et al. (2004) and

Choi et al. (2014), a simulation model is developed to sim-

ulate the effect of several treatment regimens for Barrett’s

esophagus, a precursor to esophageal cancer, for patients with

different biometric characteristics. Personalized medicine can

then be developed to determine the best treatment regime

that is customized to the particular characteristics of each

individual patient. Similar customized decision making can

be found in online advertising (Arora et al., 2008), where

advertisements are displayed depending on consumers’ web

browsing history or buying behavior to increase the revenue

of the advertising platform as well as to improve consumers’

shopping experience.

Being a classic problem in the area of stochastic sim-

ulation, R&S has a vast literature. We refer to Kim and

Nelson (2006) and Chen et al. (2015) for reviews on

the subject with emphasis on frequentist and Bayesian
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approaches, respectively. Most of the prior work, how-

ever, does not consider the presence of the covariates, and

thus the best alternative to select is universal rather than

varies as a function of the covariates. There are several

exceptions, including Hu and Ludkovski (2017), Pearce and

Branke (2017), and Shen et al. (2021). Among them Shen

et al. (2021) take a frequentist approach to solve R&S with

covariates, whereas the other two a Bayesian approach. The

present paper adopts a Bayesian perspective as well.

This paper considers a sampling policy based on knowledge

gradient (KG) for R&S with covariates. KG, introduced in

Frazier et al. (2008), is a design principle that has been widely

used for developing Bayesian sequential sampling policies

to solve a variety of optimization problems, including R&S,

in which evaluation of the objective function is noisy and

expensive. In its basic form, KG begins with assigning a mul-

tivariate normal prior on the unknown constant performance

of all alternatives. In each iteration, it chooses the sampling

location by maximizing the increment in the expected value

of the information that would be gained by taking a sam-

ple from the location. Then, the posterior is updated upon

observing the noisy sample from the chosen location. The

sampling efficiency of KG-type policies is often competi-

tive with or outperforms other sampling policies; see Frazier

et al. (2009), Scott et al. (2011), Ryzhov (2016), and Pearce

and Branke (2018) among others.

A KG-based sampling policy for R&S with covariates is

also proposed in Pearce and Branke (2017). The main dif-

ference here is that our treatment is more general. First, we

allow the sampling noise to be heteroscedastic, whereas it is

assumed to be constant for different locations of the same

alternative in their work. Heteroscedasticity is of particu-

lar significance for simulation applications such as queueing

systems. Second, we take into account possible variations

in sampling cost at different locations, whereas the sam-

pling cost is simply treated as constant everywhere in Pearce

and Branke (2017). Hence, our policy, which we refer to as

integrated knowledge gradient (IKG), attempts in each itera-

tion to maximize a “cost-adjusted” increment in the expected

value of information. These generalizations are straightfor-

ward when the variance of the sampling noise and the sam-

pling cost are assumed to be known. We also briefly discuss

and show how to deal with the case where they are unknown.

The first main contribution of this paper is to provide a

theoretical analysis of the asymptotic behavior of the IKG

policy, whereas Pearce and Branke (2017) conducted only

numerical investigation. In particular, we prove that IKG is

consistent in the sense that for any value of the covariates,

the selected alternative upon termination of the sampling

will converge to the true best almost surely as the sampling

budget grows to infinity. Moreover, we consider a practi-

cal variant—termed quasi-IKG—which does not require the

intermediate optimization problem in each iteration of IKG

to be solved exactly, and prove its consistency under mild

conditions.

Consistency of KG-type policies has been established

in various settings, mostly for problems where the num-

ber of feasible solutions is finite, including R&S (Frazier

et al., 2008, 2009; Frazier & Powell, 2011; Mes et al., 2011),

and discrete optimization via simulation (Xie et al., 2016).

KG is also used for Bayesian optimization of continuous func-

tions in Wu and Frazier (2016), Poloczek et al. (2017), and Wu

et al. (2017). However, in these papers the continuous domain

is discretized first, which effectively reduces the problem to

one with finite feasible solutions, in order to facilitate their

asymptotic analysis. The finiteness of the domain is critical

in the aforementioned papers, because the asymptotic analy-

sis there boils down to proving that each feasible solution can

be sampled infinitely often. This, by the law of large num-

bers, implies that the variance of the objective value estimate

of each solution will converge to zero. Thus, the optimal solu-

tion will be identified ultimately since the uncertainty about

the performances of the solutions will be removed completely

in the end.

By contrast, proving consistency of KG-type policies for

continuous solution domains demands a fundamentally dif-

ferent approach, since most solutions in a continuous domain

would hardly be sampled even once after all. Among the

several related papers, Scott et al. (2011) studies a KG-type

policy for Bayesian optimization of continuous functions.

Assigning a Gaussian process prior on the objective func-

tion, they established the consistency of the KG-type policy

basically by leveraging the continuity of the covariance func-

tion of the Gaussian process, which intuitively suggests that

if the variance at one location is small, then the variance in

its neighborhood ought to be small too. Toscano-Palmerin

and Frazier (2018) prove the consistency of a KG-type pol-

icy on a more general problem that can reduce to the problem

in Scott et al. (2011), for both discrete and continuous

domains.

We cast R&S with covariates to a problem of ranking a

finite number of Gaussian processes, thereby having both dis-

crete and continuous elements structurally. As a result, we

establish the consistency of the proposed IKG policy by prov-

ing the following two facts—(i) each Gaussian process is

sampled infinitely often, and (ii) the infinitely many sam-

ples assigned to a given Gaussian process drives its posterior

variance at any location to zero, thanks to the assumed con-

tinuity of its covariance function. The theoretical analysis in

this paper is partly built on the ideas developed for discrete

and continuous problems, respectively, in Frazier et al. (2008)

and Scott et al. (2011) in a federated manner.

Although our proofs share similar structures to those in

Scott et al. (2011), our assumptions are substantially simpler

and minimal. By contrast, for the proof in Scott et al. (2011)

to be valid, technical conditions are imposed to regulate

the asymptotic behavior of the posterior mean function and

the posterior covariance function of the underlying Gaus-

sian process. Nevertheless, the two conditions are difficult

to verify. We do not impose such conditions. We achieve
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the substantial simplification of the assumptions by leverag-

ing the reproducing kernel Hilbert space (RKHS) theory. The

theory has been used widely in machine learning (Steinwart

& Christmann, 2008). But its use in the analysis of KG-type

policies is less common. We develop several technical results

based on RKHS theory to facilitate analysis of the asymptotic

behavior of the posterior covariance function.1

The second main contribution of this paper is that we

develop an algorithm to solve a stochastic optimization

problem that determines the sampling decision of the IKG

policy in its each iteration. In Pearce and Branke (2017),

this optimization problem is addressed by the sample aver-

age approximation method with a derivative-free optimiza-

tion solver. Instead, we propose a stochastic gradient ascent

(SGA) algorithm, taking advantage of the fact that a gradi-

ent estimator can be derived analytically for many popular

covariance functions. Numerical experiments demonstrate

the finite-sample performance of the IKG policy in conjunc-

tion with the SGA algorithm.

We conclude the introduction by reviewing briefly the

most pertinent literature. A closely related problem is multi-

armed bandit (MAB); see Bubeck and Cesa-Bianchi (2012)

for a comprehensive review on the subject. The signifi-

cance of covariates, thereby contextual MAB (or MAB with

covariates), has also drawn substantial attention in recent

years; see Rusmevichientong and Tsitsiklis (2010), Yang and

Zhu (2002), Krause and Ong (2011), and Perchet and Rigol-

let (2013) among others. There are two critical differences

between contextual MAB and R&S with covariates. First, the

former generally assumes that the covariates arrive exoge-

nously in a sequential manner, and the decision maker can

choose at which arm (or alternative) to sample but not the

value of covariates. By contrast, the latter assumes that the

decision maker is capable of choosing both the alternative and

the covariates when specifying sampling locations. A second

difference is MAB focuses on minimizing the regret which

is caused by choosing inferior alternatives and accumulated

during the sampling process, whereas R&S focuses on iden-

tifying the best alternative eventually and the regret is not the

primary concern.

The rest of the paper is organized as follows. In Section 2,

we follow a nonparametric Bayesian approach to formulate

the problem of R&S with covariates, introduce the IKG pol-

icy, and present the main result. In Section 3, we prove the

consistency of our sampling policy in the sense that the

estimated best alternative as a function of the covariates con-

verges to the truth with probability one as the number of

samples grows to infinity. We then propose to use SGA for

computing our sampling policy in Section 4, and demonstrate

its performance via numerical experiments in Section 5. We

conclude in Section 6 and collect detailed proof and additional

1Bect et al. (2019) adopt a supermartingale approach to study the asymptotic

behavior of a general class of sequential sampling algorithms. Their analysis

has a broader scope of applicability but it is technically more involved.

technical results and numerical experiments in the Online

Appendix.

2 PROBLEM FORMULATION

Suppose that a decision maker is presented with M competing

alternatives. For each i = 1, … ,M, the performance of alter-

native i depends on a vector of covariates x = (x1, … , xd)⊺

and is denoted by 𝜃i = 𝜃i(x) for x ∈  ⊂ R
d. The perfor-

mances are unknown and can only be learned via sampling.

In particular, for any i and x, one can acquire possibly mul-

tiple noisy samples of 𝜃i(x). The decision maker aims to

select the “best” alternative for a given value of x, that is,

identify argmaxi𝜃i(x). However, since the sampling is usually

expensive in time and/or money, instead of estimating the per-

formances {𝜃i(x) ∶ i = 1, … ,M} every time a new value of

x is observed and then ranking them, it is preferable to learn

offline the decision rule

i∗(x) ∈ argmax
1≤i≤M

𝜃i(x), x ∈  , (1)

as a function of x, through a carefully designed sampling pro-

cess. Equipped with such a decision rule, the decision maker

can select the best alternative upon observing the covariates

in a timely fashion. In addition, the decision maker may have

some knowledge with regard to the covariates. For example,

certain values of the covariates may be more important or

appear more frequently than others. Suppose that this kind of

knowledge is expressed by a probability density function 𝛾(x)
on  .

During the offline learning period, we need to make

a sequence of sampling decisions {(an, vn) ∶ n = 0, 1, …},

where (an, vn) means that the (n + 1)-th sample, denoted

by yn+1, is taken from alternative an with covariates value

vn (refer it as location vn for simplicity). We assume that

given 𝜃an (vn), yn+1 is an unbiased sample having a normal

distribution, that is,

yn+1 |𝜃an (vn) ∼  (𝜃an (vn) , 𝜆an (vn)) ,

where yn | 𝜃i(x) is independent of yn′ | 𝜃i′ (x′) for (i, x, n) ≠(
i′, x′, n′). Here, 𝜆i(x) is the variance of a sample of 𝜃i(x)

given 𝜃i(x) and is assumed to be known. Moreover, suppose

that the cost of taking a sample from alternative i at location x
is ci(x) > 0, which is also assumed to be known. Suppose that

the total sampling budget for offline learning is B > 0, and the

sampling process is terminated when the budget is exhausted.

Mathematically, we will stop with the N(B)-th sample, where

N(B) ≔ min

{
N ∶

N∑
n=0

can (vn) > B

}
. (2)

Consequently, the sampling decisions are

{(an, vn) ∶ n = 0, … ,N(B) − 1} and the samples taken dur-

ing the process are
{

yn+1 ∶ n = 0, … ,N(B) − 1
}

. Notice

that N(B) = B if ci(x) ≡ 1 for i = 1, … ,M, in which case

the sampling budget is reduced to the number of samples.
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Remark 1 The assumption of known 𝜆i(x) is

critical to the theoretical analysis in this paper.

As we will see shortly, with known 𝜆i(x), if we

impose a Gaussian process as prior for 𝜃i, then

its posterior will still be a Gaussian process,

which makes the asymptotic analysis tractable.

It would not be the case if 𝜆i(x) also needs

to be estimated. In practice, 𝜆i(x) is usually

unknown and it is a common issue in the experi-

ment design. We suggest to follow the approach

in Ankenman et al. (2010), which fits the sur-

faces of 𝜆i(x) by running multiple simulations at

certain design points and using the sample vari-

ances. See more details in the numerical exper-

iments in the Online Appendix. The unknown

sampling cost ci(x) in practice can be handled

similarly.

We follow a nonparametric Bayesian approach to model the

unknown functions {𝜃1, … , 𝜃M} as well as to design the sam-

pling policy. We treat 𝜃i’s as random functions and impose

a prior on them under which they are mutually independent,

although this assumption may be relaxed. Suppose that x takes

continuous values and that under the prior, 𝜃i is a Gaussian

process with mean function 𝜇0
i (x) ≔ E [𝜃i(x)] and covari-

ance function k0
i

(
x, x′

) ≔ Cov
[
𝜃i(x), 𝜃i

(
x′)] that satisfies

the following assumption.

Assumption 1 For each i = 1, … ,M, there

exists a constant 𝜏i > 0 and a positive con-

tinuous function 𝜌i ∶ R
d → R+ such that

k0
i

(
x, x′

)
= 𝜏2

i 𝜌i
(
x − x′). Moreover,

(i) 𝜌i(|𝜹|) = 𝜌i(𝜹), where | ⋅ | means taking

the absolute value component-wise;

(ii) 𝜌i(𝜹) is decreasing in 𝜹 component-wise

for 𝜹 ≥ 0;

(iii) 𝜌i(0) = 1, 𝜌i(𝜹) → 0 as ||𝜹|| → ∞, where|| ⋅ || denotes the Euclidean norm;

(iv) there exist some 0 < Ci < ∞ and 𝜀i, ui >

0 such that

1 − 𝜌i(𝜹) ≤ Ci| log(||𝜹||)|1+𝜀i
,

for all 𝜹 such that ||𝜹|| < ui.

Remark 2 Assumption 1 stipulates that k0
i is

stationary, that is, it depends on x and x′ only

through the difference x − x′. In addition, 𝜏2
i

can be interpreted as the prior variance of 𝜃i(x)
for all x, and 𝜌i

(
x − x′

)
as the prior correlation

between 𝜃i(x) and 𝜃i
(
x′)which increases to 1 as||x−x′|| decreases to 0. The condition in part (iv)

of Assumption 1 is weak. In conjunction with

the continuity assumption of 𝜌i, it implies that

the sample paths of the Gaussian process 𝜃i are

continuous almost surely if the mean function

𝜇0
i (x) is continuous; see, for example, Adler and

Taylor (2007, Theorem 1.4.1). The sample path

continuity will be used to establish the uniform

convergence of the posterior mean functions.

A variety of covariance functions satisfy Assumption 1.

Notable examples include the squared exponential (SE)

covariance function

kSE

(
x, x′

)
= 𝜏2 exp

(
−r2

(
x − x′

))
,

where r(𝜹) =
√∑d

j=1𝛼j𝛿
2
j and 𝛼j’s are positive parameters,

and the Matérn covariance function

kMatérn

(
x, x′

)
= 𝜏2 21−𝜈

Γ(𝜈)

(√
2𝜈r

(
x − x′

))𝜈

× K𝜈

(√
2𝜈r

(
x − x′

))
,

where 𝜈 is a positive parameter that is typically taken as

half-integer (i.e., 𝜈 = p + 1∕2 for some nonnegative integer

p), Γ is the gamma function, and K𝜈 is the modified Bessel

function of the second kind. The covariance function reflects

one’s prior belief about the unknown functions. We refer to

Rasmussen and Williams (2006, Chapter 4) for more types of

covariance functions.

2.1 Bayesian updating equations

For each n = 1, 2, … , let Fn denote the 𝜎-algebra generated

by
(
a0, v0

)
, y1, … ,

(
an−1, vn−1

)
, yn, the sampling decisions

and the samples collected up to time n. Suppose that (an, vn) ∈
Fn, that is, (an, vn) depends only on the information available

at time n. In addition, we use the notation En[⋅] ≔ E [⋅|Fn],
and define Varn[⋅] and Covn[⋅] likewise.

Given the setup of our model, it is easy to derive that

{𝜃1, … , 𝜃M} are independent Gaussian processes under the

posterior distribution conditioned on Fn, n = 1, … ,N(B). In

particular, under the prior mutual independence, taking sam-

ples from one unknown function does not provide information

on another. Let Vn
i ≔ {

v𝓁 ∶ a𝓁 = i,𝓁 = 0, … , n − 1
}

denote

the set of the locations of the samples taken from 𝜃i up to

time n and define yn
i ≔ {

y𝓁+1 ∶ a𝓁 = i,𝓁 = 0, … , n − 1
}

likewise. With slight abuse of notation, when necessary, we

will also treat Vn
i as a matrix wherein the columns are cor-

responding to the points in the set and arranged in the order

of appearance, and yn
i as a column vector with elements also

arranged in the order of appearance. Then, the posterior mean

and covariance functions of 𝜃i are given by

𝜇n
i (x) ≔ E

n [𝜃i(x)] = 𝜇0
i (x) + k0

i
(
x,Vn

i
)

×
[
k0

i
(
Vn

i ,V
n
i
)
+ 𝜆i

(
Vn

i
)]−1 [yn

i − 𝜇0
i
(
Vn

i
)]

, (3)

kn
i (x, x

′) ≔ Covn [𝜃i(x), 𝜃i(x′)
]
= k0

i
(
x, x′

)
− k0

i
(
x,Vn

i
)

×
[
k0

i
(
Vn

i ,V
n
i
)
+ 𝜆i

(
Vn

i
)]−1k0

i
(
Vn

i , x
′) , (4)

where for two sets V and V′, k0
i

(
V,V′) = [

k0
i

(
x, x′

)]
x∈V,x′∈V′

is a matrix of size |V| × ||V′||, 𝜆i(V) = diag {𝜆i(x) ∶ x ∈ V}
is a diagonal matrix of size |V| × |V|, and 𝜇0

i (V) =
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(
𝜇0

i (x) ∶ x ∈ V
)

is a column vector of size |V| × 1. Here | ⋅ |
denotes the cardinality of a set. We refer to, for example, Scott

et al. (2011, section 3.2) for details. Further, the following

updating equation can be derived

𝜇n+1
i (x) = 𝜇n

i (x) + 𝜎n
i (x, v

n)Zn+1, (5)

kn+1
i (x, x′) = kn

i (x, x
′) − 𝜎n

i (x, v
n) 𝜎n

i
(
x′, vn) , (6)

where Zn+1 is a standard normal random variable independent

to everything else, and

𝜎n
i (x, v

n) ≔
{

𝜎n
i (x, v

n) , if i = an,

0, if i ≠ an,
and

𝜎n
i (x, v) ≔

kn
i (x, v)√

kn
i (v, v) + 𝜆i(v)

. (7)

In particular, conditioned on Fn and prior to taking a sam-

ple at (an, vn), the predictive distribution of 𝜇n+1
i (x) is normal

with mean 𝜇n
i (x) and standard deviation 𝜎n

i (x, v
n). Moreover,

notice that

Varn+1 [𝜃i(x)] = kn+1
i (x, x) = kn

i (x, x) −
[
𝜎n

i (x, v
n)
]2

≤ Varn [𝜃i(x)] . (8)

(Note that Equations (5)–(8) are still valid even if kn
i (v

n, vn) =
0, and/or 𝜆i (vn) = 0.) Hence, Varn [𝜃i(x)] is nonincreas-

ing in n. This basically suggests that the uncertainty about

each unknown function under the posterior decreases as more

samples from it are collected. It is thus both desirable and

practically meaningful that such uncertainty would be com-

pletely eliminated if the sampling budget is unlimited, in

which case one would be able to identify the decision rule

Equation (1) perfectly. In particular, we define consistency of

a sampling policy as follows.

Definition 1 A sampling policy is said to be

consistent if it ensures that

lim
B→∞

argmax
1≤i≤M

𝜇
N(B)
i (x) = argmax

1≤i≤M
𝜃i(x), (9)

almost surely (a.s.) for all x ∈  .

Remark 3 Under the assumption that

{𝜃1, … , 𝜃M} are independent under the prior,

collecting samples from 𝜃i does not provide

information about 𝜃j if i ≠ j. Therefore, a

consistent policy under the independence

assumption ought to ensure that the number

of samples taken from each 𝜃i grows without

bounds.

2.2 Knowledge gradient policy

We first assume temporarily that x is given and fixed, and

that ci(x) = 1 for i = 1, … ,M. Then, solving maxi 𝜃i(x) is

a selection of the best problem having finite alternatives, and

each sampling decision is reduced to choosing an alternative

i to take a sample of 𝜃i(x). The knowledge gradient (KG) pol-

icy introduced in Frazier et al. (2008) is designed exactly to

solve such a problem assuming an independent normal prior.

Specifically, the knowledge gradient at i is defined there as

the increment in the expected value of the information about

the maximum at x gained by taking a sample at i, that is,

KGn(i; x) ≔ E

[
max

1≤a≤M
𝜇n+1

a (x)
||||Fn, an = i

]
− max

1≤a≤M
𝜇n

a(x).

(10)

Then, each time the alternative i that has the largest value of

KG(i; x) is selected to generate a sample of 𝜃i(x).
Let us now return to our context where (1) the covariates

are present, (2) each sampling decision consists of both i and

x, and (3) each sampling decision may induce a different sam-

pling cost. Since a sample of 𝜃i(x) would alter the posterior

belief about 𝜃i(x′), we generalize Equation (10) and define

KGn(i, x; v) ≔ 1

ci(x)

{
E

[
max

1≤a≤M
𝜇n+1

a (v)
|||| Fn, an = i, vn = x

]
− max

1≤a≤M
𝜇n

a(v)
}

, (11)

which can be interpreted as the increment in the expected

value of the information about the maximum at v gained per

unit of sampling cost by taking a sample at (i, x). Then, we

consider the following integrated KG (IKG)

IKGn(i, x) ≔ 1

ci(x) ∫

{
E

[
max

1≤a≤M
𝜇n+1

a (v)
||||Fn, an = i, vn = x

]
− max

1≤a≤M
𝜇n

a(v)
}

𝛾(v)dv, (12)

and define the IKG sampling policy as

(an, vn) ∈ argmax
1≤i≤M,x∈

IKGn(i, x). (13)

The integrand of Equation (12) can be calculated analytically,

as shown in Lemma 1, whose proof is deferred to the Online

Appendix.

Lemma 1 For all i = 1, … ,M and x ∈  ,

IKGn(i, x) = 1

ci(x) ∫

[||𝜎n
i (v, x)||𝜙

(|||||
Δn

i (v)
𝜎n

i (v, x)

|||||
)

− ||Δn
i (v)||Φ

(
−
|||||
Δn

i (v)
𝜎n

i (v, x)

|||||
)]

𝛾(v)dv, (14)

where Δn
i (v) ≔ 𝜇n

i (v) − maxa≠i 𝜇
n
a(v), Φ is the

standard normal distribution function, and 𝜙 is
its density function.

We solve Equation (13) by first solving maxx IKGn(i, x)
for all i and then enumerating the results. The computa-

tional challenge in the former lies in the numerical integration

in Equation (14). Notice that maxx IKGn(i, x) is in fact a

stochastic optimization problem if we view the integration in

Equation (14) as an expectation with respect to the probabil-

ity density 𝛾(x) on  . One might apply the sample average

approximation method to solve maxx IKGn(i, x), but it would
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be computationally prohibitive if  is high-dimensional.

Instead, we show in Section 4 that the gradient of the inte-

grand in Equation (14) with respect to x can be calculated

explicitly, which is an unbiased estimator of ∇x IKGn(i, x)
under regularity conditions, thereby leading to a stochastic

gradient ascent method (Kushner & Yin, 2003).

We now present our main theoretical result—the IKG pol-

icy is consistent under simple assumptions. The proof will be

sketched in Section 3 and all details are collected in the Online

Appendix.

Assumption 2 The design space  is a com-

pact set in R
d with nonempty interior.

Assumption 3 For each i = 1, … ,M, 𝜇0
i (⋅),

𝜆i(⋅) > 0 and ci(⋅) > 0 are all continuous on  ,

and 𝛾(⋅) > 0 on  .

Under Assumptions 1–3, the IKG policy (13) is well

defined. This can be seen by noting that the maximum of

IKGn(i, x) over x ∈  is attainable since IKGn(i, x) is con-

tinuous in x by Assumptions 1 and 3 together with Lemma 1,

and  is compact by Assumption 2. Moreover, the IKG pol-

icy (13) is consistent as formally stated in the following

Theorem 1.

Theorem 1 If Assumptions 1–3 hold, then the
IKG policy (13) is consistent, that is, under the
IKG policy,

(i) kN(B)
i (x, x) → 0 a.s. as B → ∞ for all x ∈
 and i = 1, … ,M;

(ii) 𝜇
N(B)
i (x) → 𝜃i(x) a.s. as B → ∞ for all

x ∈  and i = 1, … ,M;

(iii) argmax1≤i≤M𝜇
N(B)
i (x)→ argmax1≤i≤M𝜃i(x)

a.s. as B → ∞ for all x ∈  .

We conclude this section by highlighting the differences

between our assumptions and those in Scott et al. (2011), in

which the consistency of a KG-type policy driven by a Gaus-

sian process is proved. First and foremost, they impose con-
ditions on both the posterior mean function and the posterior
covariance function to regulate their large-sample asymptotic
behavior. Specifically, they assume that uniformly for all n
and x, v ∈  with x ≠ v, (1) |𝜇n(x) − 𝜇n(v)| is bounded

a.s., and (2) |Corrn[𝜃(x), 𝜃(v)]| is bounded above away from

one, where Corrn means the posterior correlation.2 The two
assumptions are critical for their analysis but nontrivial to
verify in practice.

By contrast, we do not make such assumptions. Condi-

tion (1) is not necessary in our analysis because the “incre-

ment in the expected value of the information” is defined as

Equation (12) in this paper, whereas in a different form with-

out integration in Scott et al. (2011). There is no need for

2The subscript i is ignored because there is only one Gaussian process

involved in Scott et al. (2011).

us to impose Condition (2) in order to regulate the asymp-

totic behavior of the posterior covariance function, because

instead we achieve the same goal by utilizing reproducing

kernel Hilbert space (RKHS) theory.

Second, in Scott et al. (2011) the prior covariance function

of the underlying Gaussian process is of SE type. We relax

it to Assumption 1, which allows a great variety of covari-

ance functions. We also take into account possibly varying

sampling costs at different locations.

3 CONSISTENCY

It is straightforward to show that N(B) → ∞ if and only if

B → ∞, since ci(⋅) is bounded both above and below away

from zero on  for each i = 1, … ,M under Assumptions 2

and 3. Thus, Theorem 1 is equivalent to Theorem 2 as follows.

Theorem 2 If Assumptions 1–3 hold, then
under the IKG policy,

(i) kn
i (x, x) → 0 a.s. as n → ∞ for all x ∈ 

and i = 1, … ,M;

(ii) 𝜇n
i (x) → 𝜃i(x) a.s. as n → ∞ for all x ∈ 

and i = 1, … ,M;

(iii) argmax1≤i≤M𝜇
n
i (x) → argmax1≤i≤M𝜃i(x)

a.s. as n → ∞ for all x ∈  .

The bulk of the proof of consistency of the IKG pol-

icy lies in part (i) of Theorem 2, that is, to show that

limn→∞ Varn [𝜃i(x)] = 0 a.s. for all x ∈  and i = 1, … ,M.

It consists of two steps, which are summarized into the later

Propositions 2 and 3. However, both Propositions 2 and 3

critically relies on the asymptotic behavior of the posterior

covariance function, which is characterized in the following

Proposition 1.

Proposition 1 Fix i = 1, … ,M. If k0
i is sta-

tionary, then for any x ∈  , kn
i

(
x, x′) converges

to a limit, denoted by k∞i
(
x, x′

)
, uniformly in

x′ ∈  as n → ∞.

Proposition 1 shows that irrespective of the allocation of

the design points
{

v𝓁 ∶ 𝓁 = 0, … , n − 1
}

, kn
i (x, ⋅) converges

uniformly as n → ∞ for all x ∈  . (Note that this does not

mean the limit is necessarily zero.) Not only is this result of

interest in its own right, but also is crucial for proving the con-

sistency of IKG policy under assumptions weaker than those

imposed for previous related problems (Scott et al., 2011). For

example, the uniform convergence preserves the continuity

of kn
i (x, ⋅) in the limit, a property that is crucial for the proof

of Proposition 2. A more general version of Proposition 1 is

given in Bect et al. (2019, Proposition 2.9), but we present a

different proof built on RKHS theory in the Online Appendix.

Proposition 1 sets a foundation for analyzing the asymptotic

behavior of Bayesian sequential sampling policies based on

Gaussian processes with minimal assumptions.



502 DING ET AL.

Before we formally state Propositions 2 and 3, the following

definitions are required. For each i, let 𝜂n
i denote the (ran-

dom) number of times that a sample is taken from alternative

i regardless of the value of x up to the n-th sample, that is,

𝜂n
i ≔

n−1∑
𝓁=0

I{a𝓁=i}.

Further, let 𝜂∞i ≔ limn→∞ 𝜂n
i , which is well defined since it is

a limit of a nondecreasing sequence of random variables.

Proposition 2 Fix i = 1, … ,M. Assump-
tions 1–3 hold and 𝜂∞i = ∞ a.s., then for any
x ∈  , k∞i (x, x) = 0 a.s. under the IKG policy.

Proposition 3 If Assumptions 1–3 hold, then
𝜂∞i = ∞ a.s. for each i = 1, … ,M under the
IKG policy.

Part (i) of Theorem 2 is an immediate consequence of

Propositions 2 and 3. The proofs of parts (ii) and (iii) of

Theorem 2 and Propositions 2 and 3 are all collected in the

Online Appendix.

In practice, the IKG policy (13) can only be solved numer-

ically, as discussed in the next section, in which case the

obtained solution
(
ãn, ṽn)

is not exactly equal to the true

solution (an, vn). Inspired by Bect et al. (2019), we consider

the quasi-IKG sampling policy, which chooses the sampling

decision
(
ãn, ṽn)

such that

IKGn (ãn, ṽn) ≥ IKGn (an, vn) − 𝜀n, (15)

where {𝜀n} is a sequence of nonnegative real numbers such

that 𝜀n → 0 as n → ∞. It is not difficult to see that such

quasi-IKG policy is also consistent, as formally stated in the

following Theorem 3, whose proof is collected in the Online

Appendix.

Theorem 3 If Assumptions 1–3 hold, then the
quasi-IKG policy as defined in Equation (15) is
consistent.

4 STOCHASTIC GRADIENT ASCENT

We now discuss computation of Equation (13) under Assump-

tions 1–3. It primarily consists of two steps.

(i) For each i = 1, … ,M, solve maxx∈
IKGn(i, x) to find its maximizer, say vn

i .

(ii) Set an = argmax1≤i≤MIKGn (i, vn
i

)
and set

vn = vn
an .

Let 𝝃 denote a -valued random variable with density 𝛾(⋅),
and

hn
i (v, x) ≔ ||𝜎n

i (v, x)||𝜙
(|||||

Δn
i (v)

𝜎n
i (v, x)

|||||
)

− ||Δn
i (v)||Φ

(
−
|||||
Δn

i (v)
𝜎n

i (v, x)

|||||
)
. (16)

Then, we may rewrite Equation (14) as

IKGn(i, x) = [ci(x)]−1
E
[
hn

i (𝝃, x)
]
, (17)

which suggests the following sample average approximation,

ÎKG
n
(i, x) = 1

ci(x)J

J∑
j=1

hn
i
(
𝝃j, x

)
, (18)

where 𝝃j’s are independent copies of 𝝃 and J is the sample

size. In particular, we will use Equation (18) in step (ii) above

for computing an for given vn
i ’s. However, the sample average

approximation method can easily become computationally

prohibitive when applied to solve maxx IKGn(i, x) in step (i)

if the domain  is high-dimensional. Hence, we consider

instead the stochastic gradient ascent method to complete

step (i).

Equation (17) means that in step (i) above, we solve the

stochastic optimization problem

vn
i ∈ argmax

x∈
[ci(x)]−1

E
[
hn

i (𝝃, x)
]
,

for each i = 1, … ,M. If gn
i (𝝃, x) is an unbiased estimator of

𝜕

𝜕x

{
[ci(x)]−1

E
[
hn

i (𝝃, x)
]}

, then vn
i can be computed approx-

imately using the stochastic gradient ascent (SGA) method;

see Kushner and Yin (2003) for a comprehensive treatment

and Newton et al. (2018) for a recent survey on the subject.

Given an initial solution x1 ∈  and a maximum iteration

limit K, SGA iteratively computes

xk+1 = Π
[
xk + bkgn

i
(
𝝃k, xk

)]
, k = 1, … ,K, (19)

where Π ∶ R
d →  denotes a projection mapping points

outside  back to  ,3 and bk is referred as the step size that

satisfies
∑∞

k=1bk = ∞ and
∑∞

k=1b2
k < ∞. In general, the choice

of bk is crucial for the practical performance of SGA, and it

is commonly set as bk = 𝛼∕k𝛽 for some constants 𝛼 and 𝛽.

Note that gn
i (𝝃, x) =

𝜕

𝜕x

[
hn

i (𝝃, x)∕ci(x)
]

under mild regular-

ity conditions (L’Ecuyer, 1995). The explicit forms of gn
i (𝝃, x)

for several common covariance functions are collected in the

Online Appendix. Besides, in the implementation of SGA

algorithm, practical modifications such as mini batch and

Polyak-Ruppert averaging (Polyak & Juditsky, 1992) can

be adopted to achieve better performance. Detailed discus-

sion is collected in the Online Appendix, together with other

implementation issues of IKG policy.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the IKG policy

via numerical experiments due to two reasons. First, the theo-

retical analysis, albeit establishing the consistency of the IKG

3For example, one may set Π (x) to be the point in  closest to x.
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policy in a large-sample asymptotic regime, does not provide

a guarantee on the finite-sample performance of the policy.

Second, the analysis has implicitly assumed that the sampling

decisions of the IKG policy in Equation (13) can be computed

exactly, while in practice it needs to be solved numerically

via methods such as SGA that we have proposed. Additional

numerical experiments on other issues, including the com-

putational cost comparison between SGA versus the sample

average approximation and the effect of estimated 𝜆i(x), are

collected in the Online Appendix. All the numerical experi-

ments are implemented in MATLAB and the source code is

available at https://github.com/shenhaihui/ikg.

5.1 Finite-sample performance

The numerical experiments are conducted on synthetic prob-

lems, with the number of alternatives M = 5 and the dimen-

sionality d = 1, 3, 5, 7. For each i = 1, … ,M, the true

performance of alternative i is the revised Griewank function,

𝜃i(x) =
d∑

j=1

x2
j

4000
− 1.5d−1

d∏
j=1

cos

(
xj√

ij

)
, x ∈  = [0, 10]d.

Further, we set sampling variance 𝜆i(x) ≡ 0.01, and take

prior 𝜇0
i (x) = 𝜇0(x) ≡ 0, and k0

i

(
x, x′

)
= k0(x, x′) =

exp
(
− 1

d
‖x − x′‖2

)
. We set the cost function ci(x) ≡ 1 for

each i = 1, … ,M, but will investigate the impact of a

different cost function later.

We consider two density functions for the covariates: (1)

uniform distribution on  : 𝛾(x) = 1∕||; (2) multivariate

normal distribution with mean 0 and covariance matrix 42I
truncated on  : 𝛾(x) = 𝜙

(
x; 0, 42I

)
∕ ∫ 𝜙

(
v; 0, 42I

)
dv. For

convenience, we call the above specifications Problem 1 (P1)

and Problem 2 (P2), respectively, depending on the choice of

𝛾(x).
The parameters involved in the SGA algorithm (see details

in the Online Appendix) are given as follows: K = 100d,

K0 = K∕4, bk = 200d∕k0.7, m = 20d, and J = 500d2. More-

over, the algorithm is started with a random initial solution.

The performance of the IKG policy with respect to the sam-

pling budget B is evaluated via the opportunity cost (OC), that

is, the integrated difference in performance between the best

alternative and the alternative chosen by the IKG policy upon

exhausting the sampling budget.

OC(B) ≔ E

[
∫

(
𝜃i∗(x)(x) − 𝜃i∗(x;𝜔)(x)

)
𝛾(x)dx

]
,

where î∗(x;𝜔) ∈ argmax1≤i≤M𝜇
N(B)
i (x;𝜔) is the learned deci-

sion rule up to the budget B under the IKG policy, 𝜔 denotes

the samples taken under the policy, and the expectation is with

respect to 𝜔. Clearly, OC(B) → 0 as B → ∞, since the IKG

policy is consistent. We estimate OC(B) via

ÔC(B) = 1

L

L∑
l=1

[
1

J′

J′∑
j=1

(
𝜃i∗(xj)

(
xj
)
− 𝜃i∗(xj;𝜔l)

(
xj
))]

,

where L = 30 is the number of replications, 𝜔l denotes the

samples for replication l = 1, … ,L, and {x1, … , xJ′ } is

a random sample of the covariates generated from a given

density function 𝛾(x) with J′ = 1000d2 for the purpose of

evaluation.

We compare the IKG policy against three other polices:

• IKG with Random Covariates (IKGwRC).
Recall that in the computation of IKG pol-

icy, random solution is used to initiate the

SGA algorithm. To check whether such ran-

dom initialization is a main cause for the

effectiveness of IKG, we consider the IKG-

wRC policy as follows. Let xn
1
, … , xn

M be

the initial solutions for M alternatives used in

the SGA algorithm when computing
(
ân, v̂n)

,

n = 0, 1, … Then the IKGwRC policy will

sample at (an, vn) given by

an = argmax
1≤i≤M

log ÎKG
n (

i, xn
i
)

and vn = xn
an ,

where the same samples are used to compute

ÎKG
n

as in the IKG policy.

• Binned Successive Elimination (BSE). The

BSE policy is proposed by Perchet and Rigol-

let (2013) for solving nonparametric MAB

problems with covariates. In their setting,

values of the covariates arrive randomly, and

the policy only determines which alternative

to select. To implement BSE in our setting,

we randomly generate vn from uniform distri-

bution on  , and then apply the BSE policy

to determine an. The BSE policy divides 
into md parts, where m is the number of uni-

formly divided regions on each coordinate.

For each problem, m is tuned within the set

{1, … , 10}, while other parameters follow

the suggestion in Perchet and Rigollet (2013).

• Pure Random Search (PRS). The PRS policy

will sample at (an, vn), where an is randomly

generated from the uniform distribution on

{1, … ,M} and vn is generated from the uni-

form distribution on  .

The performances of the four policies for problems P1

and P2 with d = 1, 3, 5, 7 are shown in Figures 1 and 2,

respectively. Several findings are made as follows.

First, the estimated opportunity cost in all the test prob-

lems exhibits a clear trend of convergence to zero. This,

from a practical point view, provides an assurance that the

IKG policy in conjunction with the SGA algorithm indeed

works as intended, that is, the uncertainty about the perfor-

mances of the competing alternatives will vanish eventually

as the sampling budget grows. Second, the IKG policy can

quickly reduce the opportunity cost when the sampling budget

is relatively small, but the reduction appears to slow down

https://github.com/shenhaihui/ikg
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FIGURE 1 Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis) for P1
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FIGURE 2 Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis) for P2

as the sampling budget increases. This finding is consisted

with prior research on other KG-type policies such as Frazier

et al. (2009), Frazier and Powell (2011), and Xie et al. (2016).

Third, the learning task of identifying the best alternative

becomes substantially more difficult when the dimensionality

of the covariates is large. This can be seen from the growing

sampling budget and the slowing reduction in the opportunity

cost as d increases.

Overall, IKG outperforms the other three policies. Specific

comparisons are as follows. First, IKG has better performance

than IKGwRC, especially when the dimensionality is high,

which indicates that the SGA algorithm in IKG for solving

vn
i (see Section 4) indeed works well and has a significant

effect in IKG. Second, BSE has inferior performance than

IKG, which may be caused by the fact that BSE only opti-

mizes an given randomly observed vn, while IKG optimizes

both an and vn at the same time. Third, PRS overall has the

worst performance, which is not surprising since it does not

utilize any information gained from previous sampling. Note

that PRS is a consistent policy, but the consistency does not

guarantee any finite-sample performance. This reflects the

value of IKG—it is not only provably consistent, but also
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FIGURE 3 Estimated opportunity cost (vertical axis) as a function of the sampling budget (horizontal axis) for P3. IKG–CI means sampling costs are

ignored when implementing the IKG policy. The shaded regions represent the 99% confidence intervals

takes advantage of information gained from previous samples

to yield good finite-sample performance.

5.2 Effect of sampling cost

We are also interested in the effect of sampling costs

on the IKG policy. In particular, we consider a dif-

ferent cost function other than the unit cost function:

ci(x) = 23−i (1 + ||x − 5||2∕(10d)
)
, where 5 is a d × 1 vector

of all fives. We set 𝛾(x) to be the uniform density4 and call

this specification Problem 3 (P3). We compare two scenarios:

(i) the sampling cost is incorporated correctly; and (ii) one

ignores variations in the sampling cost at different locations

and mistakenly uses the unit sampling cost when implement-

ing the IKG policy (but the actual sampling consumption

follows ci(x)). The comparison is illustrated in Figure 3.

There are two observations. On one hand, despite the mis-

specification in the sampling cost function, the IKG policy

is still consistent, with the associated opportunity cost con-

verging to zero. This is not surprising, because using the unit

sampling cost function, that is, ci(x) ≡ 1, is exactly the setup

of Theorem 2. On the other hand, however, the finite-sample

performance of the IKG policy indeed deteriorates as a result

of the misspecification. Further, the deterioration appears

to become more significant as the dimensionality of the

covariates increases.

6 CONCLUSIONS

In this paper, we study sequential sampling for the problem

of selection with covariates which aims to identify the best

4Setting 𝛾(x) to be the truncated normal density leads to similar findings.

alternative as a function of the covariates. Each sampling

decision involves choosing an alternative and a value of the

covariates, from the pair of which a sample will be taken.

We design a sequential sampling policy via a nonparametric

Bayesian approach. In particular, following the well-known

KG design principle for simulation optimization, we develop

the IKG policy that attempts to maximize the “one-step” inte-

grated increment in the expected value of information per unit

of sampling cost.

We prove the consistency of the IKG policy under min-

imal assumptions. Compared to prior work on asymptotic

analysis of KG-type sampling policies, our assumptions are

simpler and significantly more general, thanks to technical

machinery that we develop based on RKHS theory. Never-

theless, to compute the sampling decisions of the IKG policy

requires solving a multidimensional stochastic optimization

problem. To that end, we develop a numerical algorithm based

on the SGA method. Numerical experiments illustrate the

finite-sample performance of the IKG policy and provide a

practical assurance that the developed methodology works as

intended.
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