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E-Companion to “Gaussian Process Based Random Search for
Continuous Optimization via Simulation” by Wang, Hong,
Jiang and Shen

EC.1. Proof of Critical Lemmas
Section contains the proofs of Lemmas 3 and 7-9, which are critical results in this paper.
EC.1.1. Proof of Lemma 3

First notice that k,(x,z) = Var (g(x)|{X",G"}) > 0. From Equation (3), it is easy to see that

[k (2, "))
< .
kn(mn+1, $"+1) + )\Q(xn+1) — k”(x’ ZC), (EC 1)

kpii(xz, @) =k, (x,x) —

which implies that k,,(x, x) decreases in n. Also note from Equation (3) that reordering the sampling
decision-observation pairs (1, G(x1)),. .., (€., G(x,)) does not alter k,(x,x). Fix an & € X'. Then,
for any € >0, x € X NS(x,¢) C X, and

Sp (2, €) Mg c x5 (@, [Fo(x, 2)]?
Sn(x,€)T2+ N2

max

kn(w7w) S ksn(m,e)(wax) S T

: (EC.2)

where the second inequality follows from Lemma 2. According to Assumption 3, [ko(x,x’)]* =
74p?(|z — 2'|). Since || — x'|| <€, Assumption 3 also implies that p(|x —x'|) > p(el), where 1 € R?
is the vector of all ones. Following Equation (EC.2),

sp(x,€)Tip?(e1)
Sp (@, €)T2 + A2

max

kn(z,x) < 7% —

By Lemma 1, s,(x,e) — oo almost surely as n — oo, so limsup,, . k,(z,z) < 7%[1 — p*(el)],
with probability one. Sending ¢ — 0, we have p(el) — 1, thus limsup,,_, k.(x,x) <0, with
probability one. Recall that k,(x,x) > 0, then, with probability one, limsup, , k,(x,x) =

liminf, . k,(x,x) =0, which implies &, (x,x) — 0 almost surely as n — oo. d

EC.1.2. Proof of Lemma 7

Let 7., p, and 7, be as defined in Lemma 6 with v € (0,1) and b — 1 > a. Notice that k,(x,x)
decreases in n (see Equation in the proof of Lemma 3, and does not depend on the ordering
of the sampling decision-observation pairs (x1,G(x1)),...,(x,, G(x,)) (see Equation (3)). Fix an
x € X. Notice that x € X NS(x,r,) C X. By reordering the decision-observation pairs such that
the former s, (x,r,) points are within X NS(x,r,), we obtain

Sn (m) Tn) minw’eXﬁS(w,rn) [kO (wv m/)]Q
Sp(@, 1) T2+ A2

max

kn(wu 13) S ksn(w,rn)(mym) S 7_2 -

)
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where the second inequality follows from Lemma 2. Note that the unconditional covariance function
satisfies ko(x,x') > 72(1 — C, ||z — 2'||") for constants C, >0, 0 <n <2 and any close pair of points.
By Lemma 6, with probability one, s, (x,r,) is Q(n") with v € (0,1) and b—a —1 >0, i.e.,

Sn(x,7,) > enPr for some ¢ > 0. Then,

sp(T,r,)T? .
k <7?- e n X 1-Clz—2'||"
n(w w) =7 (m ’rn)'TQ +)\72naa7 w’GXI}Tlé]?w,'f'n)( ' ||a: * || )
Pn
STQ L X min (1_Cr|’$_m/||n)
enPrT? + AL, @ €XNS@rn)
9 cenPrrt

<7 — x (1=C.rh),

cnPrT2 4+ \2

max

maa:)

where the second inequality holds with probability one, and is due to the fact that x72/(x72+ A2

increases in x > 0. Hence,

4
enPrr
k(x,x)<t?——— x(1=C,r"
n 9 P 2 2 r'n
cnPrT? + A2
2
cnPrr? A2 n(1—=7n)
max, —p 2,1, —
T iz < c "+ CprgnT T d
max

)\2 n(l—yn)
< constant x <Wn—Pn Ot T
c

: n(l—n)
< constant x n~ 2P, T}

n(1—vyn)
d

) almost surely.

n(l—vy+ae(n))
d

for sufficiently large n. Thus we have that k,(z,z) is O(n~™n{Pn

To obtain the maximum rate, we let p, = "(%7"), ie., v—be(n) =
be obtained v = [ + (an + db)e(n)]/(d + n). Take a = —db/n. It makes v = n/(d + n), which
satisfies v € (0,1). Let b>n/(d+n). Then b —a =b(d+n)/n > 1, which satisfies b — 1 > a. Finally,

17”} pn =7 —be(n)=n/(d+n)—be(n), with b >n/(d+n). O

, then it can

min{p,, ~

EC.1.3. Proof of Lemma 8

For any n > 1, it can be obtained that

Plpn () — g(@)| > €0} <P{pn () — g(@) > €} + P{pn(x) — g(®) < —€n}. (EC.3)

Applying the Chernoff bound, we have

P{un () —g(x) > €0} = E [P{pn(z) — g(x) > e, { X", G" }}]
< ten . [ otlin (@) —9(@) | { X0
_E[rtn;gle ‘Ele {Xx",G"}]
2
=FE [mlne ten L gz kn (m”c)]

>0

=FE [mme 7 fon () te”]a
>0
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where the second equality is due to g(x)[{ X", G"} ~ N (pun (), k, (2, x)) and the moment-generating
function of normal random variable. Notice that %ksn(a),m) — te, is minimized at t =€, /k,(x,x)

with value —€2 /(2k,, (z,x)), then
—e2 n(x,x
P{p,(x) —g(x) >€,} <E {e n/ (Zkn( ))}. (EC.4)

In the similar way, we can also get

P{u,(2) — g(x) < —e,} <E [e*i/ <2kn<w’m>>] . (EC.5)
Combining Equations (EC.3)), (EC.4]) and (EC.5|) finishes the proof. O

EC.1.4. Proof of Lemma 9

Step 1. Arbitrarily choose an optimal solution &* € X*. For j =1,2,...,d, let g(x); be the sample
path of the derivative surface fgp (z);. According to the mean value theorem, it can be obtained

that

g(@) =g(x") +Vg(§)' (z — =), (EC.6)
where Vg(x) = (¢(x)1,...,9(x)q)" denotes the gradient of g(x) and & € X (Fitzpatrick 2009,
Theorem 15.29). By the Cauchy-Schwarz inequality, it then follows that

lg(x) — g(x)| = [Vg(&)"(z — =)

<Vy(©)llfle™ — |- (EC.7)

Recall that X is compact under Assumption 6. Based on Assumption 5, fgp (z); has continuous
sample paths on X, for all j=1,...,d, and is thus almost surely bounded on X (Adler and Taylor
2007, Theorem 1.5.4). So,

g" = max {sup(@),l}.
=l.d Lgex

is a well defined random variable. Since

1/2
1IVg(&)ll = [Z(Q(E)j)2] < Vg,

then
lg9(z") — g(x)| < Vdg"||lx” — . (EC.8)

So, we have

P
=P (N_ {g(x") — g(z:) > €n})
<P (i (Vi e — ] > )

<P (m;zl {Hac* — x| > (IE"WD +P (\/857* > (1ogn)1/d> . (EC.9)

ogn)
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We now establish the bounds for the two terms respectively.
Step 2. For the first term in the right-hand side of Equation (EC.9), let d,(e,) = €,/(log n)t/d,

and construct a ball S(z*,0,(¢,)). Then, we can have
€n

P <m?_1 {Hm* > agnwD — 1B (UL {fle" @i < €, /(log ) /*})

=1-P (Z Liaies@* bnen))) > 0) : (EC.10)

i=1
By Lemma 5, for small enough §,,(¢,,) >0, v(S(x*,d,(€,))) NX) > Cv(S(x*,d,(€,))). Since each
design point x; € X" is generated from density function ¢;, which satisfies ¢; > a >0 on X, for

i1=1,...,n,
P{x; € S(x*,0,(€,))} > av(S(x*,d,(e,)) NX)
d
. aCn2d,(e,)?
> O(CI/(S(m 75n(€n))) = Wa
where the equality is due to the volume formula of a d-dimensional ball. Let B;, i=1,...,n, be
i.i.d. Bernoulli random variables with parameter % € (0,1). Then,
n n d n
aCr26,(€,)?
P Lo, es(@ 6, (e >0 | >P B;>0|=1-[1-——7-727——"] . EC.11
(z_; {;€8(@* dnlen))} ) (Z_; ) ( M+ 1) ( )

Combing Equations (EC.10) and (EC.11)), we have

€n an%én(en)d ! aC’W%(Sn(en)dn
PAm {llo — )| > — ) < (1280 )
(Z-l{”“’ "”'”><logn>1/d}> ( K +1) ) eXp{ rE+1)

2

aCr¥eln
= _ EC.12

where the second inequality is due to e* > 1+ .

Step 3. For the second term in the right-hand side of Equation , we need to bound the tail
probability of ¢*. As mentioned before, fgp(x); is a Gaussian process with continuous and thus
bounded sample paths on X with probability one, for each j=1,...,d. Then by the Borell-TIS
inequality (Adler and Taylor| 2007, Section 2.1), for j=1,...,d, and sufficiently large ¢,

2
P {sup (g(x); — fro(x);) > t} <exp {Cjt — %‘?},

rcX
where Cj is a constant depending only on E[sup,c(g(x); — fio(x);)], and o7 = sup,.» E[(g(x); —

fio(z);)*]. Let a; = supgcy |fto(x);]. Notice that sup,cx [§(z); — f0(x);] + a; > supger(|9();] —
|fto(x);]) + a; > sup,ex |G(x);]. So, for sufficiently large ¢,

p{sup @)1 > ¢ <P {suplata), - ool + o, > ¢} =P { supli(e), ~ fu(a)y|> ¢,
xeX xcX xcX
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<2 {sup (9(a), -~ fuf@)) > 1~ a0, |

xreX

crem{cyta)- 5] e

Replacing ¢ with (logn)'/?/v/d where n is sufficiently large, we have

77777

1/d 2
(logm)!/¢ aj)

SQiexp Cj<(10gn)1/d—aj) - ( Vi

EC.14

where the second inequality is by Equation (EC.13|). Finally, combining Equations (EC.9)), (EC.12)
and (EC.14), we have

P(MiZi{g" —g(xi) > €n})

1/d 2
(logm)!/? aj)

d d
aCrzeln (logn)Y/4 < Vd
cexpd __Cmtem |, o, (Qoe™ |
—eXp{ F(g+1)logn}+ ;eXp Nva Y 202
for sufficiently large n. So the proof is completed. O

EC.2. Proof of Other Lemmas

Section contains the proofs of Lemmas 6 and 10.

EC.2.1. Proof of Lemma 6

Since 7, =~ —ae(n) — v as n — oo, it can be obtained that r,, — 0. Notice that v € (0,1). Then,
there exists some N € N such that 7, € (0,1) and r,, /(3v/d) < € for all n> N, where ¢ is a sufficiently
small positive constant which satisfies Equation (7) in Lemma 5. Suppose that for each n > N, we
partition each coordinate of R? into segments of length 7,/ (3\/&), and by doing so we obtain closed
subsets, which are referred as grid boxes that together cover R%. For each x € X, let T}, be the grid
box containing x. Define H, as the union of 7, and all the other grid box adjacent to T, (i.e., with
common vertex, edge or surface). Under the Euclidean distance used in this paper, H, covers all
points which are at most r,, /(3v/d) from T}, and hence it can be obtained that S(z,r,/(3v/d)) C Hy.
Thus, for n > N,

V(Hy N X) > v(S(, 7, /(3Vd) N X) > Cy - v(S(x, 7,/ (3Vd)) = Cy - (1) = Q (n=(=)) | (EC.15)
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where C; and Cy are positive constants, the second inequality follows from Lemma 5, and the last

equality follows from the choice that r, =ron~ =

Because & is bounded by Assumption 6 and r, is of order Q(n‘l_%), each dimension needs
to be partitioned into O(n%) segments, and thus the total number of grid boxes T, necessary
to cover X is O(n'~™). Because T, C H, for each & € X, obviously X can be covered with a set
of H,, whose cardinality is [(n) = O(n'~™). Denote such set as H(n) = {H,(n)}""). By Equation
(EC.15), it can be obtained that for each n > N, v(Hy(n) N X) is Q(n~1=7)) for all k. Note that for
each n> N and x € X, we can find 1 <k <lI(n) such that € Hy(n). Also note that the maximum
distance between any two points in Hy(n) is r,,. We can obtain that Hy(n) N X C S(x,r,) for each
x € Hy(n). To summarize, for sufficiently large n, (i.e., n > N), we obtain the three properties
about H(n):

(i) I(n) is O(nt=m).
(i) v(Hp(n)NX) is Q(n=(=)) for all k, where v(-) is the d-dimensional volume.
(iii) For @ € X, if Hy(n) is the box in #H(n) such that x € Hy(n), then Hy(n)NX C S(x,r,) C
S(x,ry), i=1,...,n.

Recall that p, =~ —be(n). Let s(n) be an integer-valued function of n with order ©(n”"), and
Ni(n) =>"" | Ly, em, (nnx be the number of sampled points that fall into Hy(n) N X among all n
points. By the property (iii), if x € Hy(n),

{Ni(n) = s(n)} € {sn(,r0) > 5(n)}.

Because H(n) covers X and property (iii) holds for all x € X', we can then have

U(n)

D(n) = ({Ne(n) = s(n)} C () {sa(@, ) = s(n)}.

reX

Taking complement set on both sides yields

I(n)
D(n)* = [ J{Nk(n) <s(n)} 2 | {su(z,r) <s(n)}. (EC.16)

Let us first look at the probability P{Ny(n) < s(n)}. For a fixed n, consider Hy(n) € H(n). Since
each design point x; € X™ is generated from density ¢; > a >0 on X, for i=1,...,n, then

P{x, € Hi(n)} > av(X N Hy(n)).

Notice that v(Hy(n)NX) > = for some constant ¢y > 0, from the property (ii). Let B;,i=1,2,...,

nl=7n

acy
nl=7n "

be independent Bernoulli random variables with parameter So, by letting ¢ = O%CO,

P{Ny(n) <s(n)} =P {; Lo,eny (mnx < s(n)}
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n
SIP’{ E B, <s(n)}
i=1

s(n)—1 j n—j
n 1 1
S Z (]) <Cn1—"/n> <1 a cnl—’Y'rL) ’

=0

Hence,

I(n) l(n)
P{D(n)’} =P <U{Nk(n) < S(n)}> <Y P{Ni(n) <s(n)}

k=1
s(n)—1

o5 ) ) o)

Jj=0

=1(n) <1 - Cn11_%>” S(nz)l <’;> (en'=m —1) 7.

Jj=0

By the property (i), I(n) < Cn'~"™ for some constant C' > 0. Recall that s(n) is O(n"), so
s(n) <anP~ for some constant a > 0. We then follow the similar steps as in the proof of Lemma 4

in [Andradottir and Prudius (2010) to show

> P{D(n)} <, (EC.17)
n=ng
for sufficiently large ny. Note that p, =~ — be(n), so p, — v € (0,1) as n — co. Recall that
Y — v € (0,1) as n — oo, too. Hence, let n be sufficiently large so that s(n) <n/2 and en'~"™ > 2.

Then, for j < s(n) <n/2, (?) < (3(7:1)) < s <At So,

ns(n)—1
c — anPn 1 - —J
P{D(n)} < Cnl = (1 _ n) S (ent - 1))
=0
Since cn'~ > 2, then

s(n)—1

_ > 1 Ioepttm —1
1—yn _ J —
(cn 1) = Z <cn1—7n — 1) ent—m —2°

Jj=0 Jj=0

Thus,

a 1 " oenttm —1 i 1 n
c 1—yn+anPm _ 14+anPm -
P{D(n)} <Cn (1 cnl—%) X iy E— < constant x n (1 cnl—%) ,

for sufficiently large n. Observe that n'~™ — oo as n — oo since 7y, — v € (0,1). Then, (1 +
—enl™n enl™m
1/(—cn'=m)) " L easn— 0o, which implies that (141/(—cn!=)) R 1/e < 1. So, there

1-vn
exists 0 < B < 1 such that for sufficiently large n, (1 +1/ (—cnl‘%))n k < B, which further implies
that (1—1/(cn!~))" < 8"™". Note that b—1 > a. We can find § > 0 such that b—1—§ > a. Observe



ec8 e-companion to Wang, Hong, Jiang and Shen: Gaussian Process Based Random Search Algorithms

that log(n'*™"") =logn + an = (=D=("_ It can be obtained that log(n!+a™™) /ny=G-1=0m) @

T+anPn env—(b—l—f?)s(ﬂ)

as n — oo, which implies that n for sufficiently large n. Then,

ny—(b=1=8)=(n)

P{D(n)} < constant x e x """ = constant X exp (n%(b*ké)s(”) +n7% Jog B)

< constant x exp(—n%(b_l_‘s)a(”)),

for sufficiently large n, where the second inequality comes from the facts that log8 < 0 and
b—1—0>a. Notice that y— (b—1—0)e(n) = v €(0,1) as n — oo. So we can find ¢ € (0,1) such
that t <y — (b—1—9d)e(n) for sufficiently large n. Thus,

P{D(n)} < constant x exp(—n7~"~170<(")) < constant x exp(—n').

So, to prove Equation (EC.17)), by the integral test for convergence, it suffices to prove f:; e~ da <

fooo e dz < oo, for t € (0,1). Note that by the change of variable in integral,

o 1 1.1
/ e da :/ SytleV dy = -T'(=) < o0,
. .t £t

where I'(+) is the gamma function. Thus, Equation (EC.17) is proved.
According to Equations (EC.16) and (EC.17), for any = € X,

ZP{sn(mrn <s(n }<ZP<U{snmrn <s(n ><Z}P’{D )} < o0,

n=ng n=ng reX n=ng

for sufficiently large ng. Then, by Borel-Cantelli lemma, P{s, (x,r,) < s(n) infinitely often} = 0.

(
Since s(n) is ©(n?"), we then immediately have P{s, (x,r,) is Q(n?")} =1. O

EC.2.2. Proof of Lemma 10
Let Z ~N(0,1), then

P(Z(2) > o} = P(uE (@) + [k ()] 22 > o)
) e~ i (a)
~*{2> gte o)
M—M}

=1-2((M - M)/1),

ZIP’{Z>

where the inequality is due to the facts that ¢ < M, uc®(x) > M, and k% (x,x) > 72. Besides, since
P (x) < ¢, P{Z(x) > ¢} <0.5. Hence,

P{Z(x)>c} _1-0(M-M)/T) _

fl=) = [y P{Z(x)>c}dz ~ [,0.5 dz - O
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EC.3. Analyses of Some Correlation Functions

Section [EC.3] analyzes the sample path differentiability and lower bound of several correlation
functions.
The sample path differentiability

The Gaussian correlation function
d
p(x,a')=p(8) =exp{—>_6,5;}
j=1

with 6 =« — . It is well known that the sample paths from a Gaussian process having this
correlation function are infinitely differentiable almost surely. Moreover, the correlation function of
the first-order derivative surface j;(8)/p;(0) = (1 —260;67)p(d) (a function of d) is still stationary.
Therefore, the Gaussian process with Gaussian correlation function satisfies Assumption 5.

The Matérn correlation function

N T V20[8,\ T(t+1) < (E+0)! (VBulg [\
pv(m,w)—p(5)—gexp<_ I )F(Zt—l—l) ,_Oi!(t—i)!< lj > '

7

with d =x —a’, [; >0 and v=1t+1/2 (¢t is a positive integer). It is well known that the sample
paths from a one-dimensional Gaussian process having Matérn correlation function are continuously
differentiable almost surely of order [v] —1 (Santner et al. | 2003} p. 43-44). In addition, it can be
checked that the one-dimensional Matérn correlation function (with v being a half integer and greater
than 1) and the correlation function of its first-order derivative surface all satisfy Assumption 3 (iii).
The d-dimensional Matérn correlation function is the product of the one-dimensional correlation
functions. It can be verified that the Gaussian process with this d-dimensional Matérn correlation
function still has continuously differentiable sample paths. Therefore, the Gaussian process having
Matérn correlation function with v =t+1/2 (¢ is a positive integer) satisfies Assumption 5.
The rational quadratic function

d 52\
plx,x') = p(d) = <1+ Zﬂ‘“)

2cvl?

with § = — o’ and «,] > 0. By taking twice differentiation, we can obtain that §;(d) =

a_ 2\ TN agn)e? a2\
— (1 + ZZ;Q% + ! 1;4)5’ 1+ Zgzllgéj exists and is continuous with p;(0) = —1/1%

Then, it can be checked that j;()/p;(0) satisties Assumption 3 (iii). So it can be concluded that the
sample paths of the Gaussian process having this correlation function are continuously differentiable
almost surely (Abrahamsen!1997). Moreover, the correlation function p;(d)/5,(0) is still stationary.

Therefore, the Gaussian process having rational quadratic function satisfies Assumption 5.

The Lower Bound of Correlation Functions
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The power exponential correlation function

d
pla, ') =exp{—> 0;|z; —a}|"}
j=1

with 6, >0 and 0 <7 < 2. Define 6,,,, be the maximum among 6,, 7 =1,2,...,d, and ”Hn is a norm
on R? such that |z|, = (Zj_l |:E7-\77)1/". Since the space R? is of finite dimension, any norm |-[|, ~is

equivalent to any other norm |||

e., [lzll,, <Chnllzll,, for a positive number C,,,, and all x

?72’
in X (Kreyszig/|1978). Then, we can have Z?Zl 05z — 2|7 < Opmae || — a:’HZ <o Crplle —2'||" =

1712

C.llz —'||" for ' in S(z,7,). According to e® > 1+ x, we can obtain p(z,z') >1—C, |z —z'||".
We note that the power exponential correlation function is the Gaussian correlation function with
n=2.

When v is half integer, i.e., v =t + 1/2, where ¢ is a positive integer, the Matérn correlation

- V20le, |\ T4 1)~ (i) (VBula -]\’
=[lew| ——7 F(2t+1)zz‘(t—z) I,
=1 J i
It can be verified that

pv(w’w/)—HeXp< \/%’33 —%’)F(t-i-l (t+1)! <\/87)’x —q: ’)

lj 2t+ 1) —0 Z'(t—l) lj

K2

_ VIlz -] D41 S et (VEulm -\ ]
=11{1+ I, MY e il(t—i)! l; P —\/%; l;

j=1 J i J

zn <1+W> .exp<_\/%z }%;@‘)

i

function is

v
—
+
]
3
<~ é‘?
QH\
~
—
H M Y

21—0121 ||:c—a:

where l,,;, =min;_ ... 4; and the last inequality is due to the equivalence of the norm ”Hn on finite
dimensional space R?.

The quadratic covariance function

p(w,w'>=<1+zﬂ =) ) ,

2cul?
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with «, 1> 0. It can also be verified that
1
p(r) = RS &
+ 2al2

1
(62?:1(%‘ —z3)2/2al2)a

Y4, (@j—a))?

= e 21
d
>1_ Zj:l(xj x])2
. 2/2
1 2
1 e

EC.4. Sampling Scheme

In the following, we will describe the acceptance-rejection sampling (ARS) scheme and the Markov
chain coordinate sampling (MCCS) scheme in details. According to Equation (15), we have that
P{Z(z) > c} < P{Z(x) > us*(x)} = 1/2, and

P{Z(x) > c} (1/2)v(X) 1
I [ P{Z(z) > c} dz = [ P{Z(z)>c} dz v(X)
x x
Since v(X)/ [, P{Z(z) > c} dz is a constant and ﬁ is the probability density of the uniform

distribution on X, it is easy to see that the following ARS scheme can output a sample following

the density f.(x).

ARS Scheme
Step 1. Generate a sample y uniformly in X and w uniformly in (0,1).

Step 2. If u <2P{Z(y) > ¢}, return y; otherwise, go to Step 1.

The ARS algorithm avoids the calculation of the integration in the denominator of Equation (15).
However, when the sampling probabilities are concentrated on small regions, the acceptance rate
may be very low, and thus impacts the efficiency of the ARS scheme. Therefore, a MCCS scheme is
proposed.

MCCS Scheme

Step 0. Let t =0, y = yy. Specify the iteration number 7T'.

Step 1. Let t =t + 1. Sample an integer j from 1 to d uniformly. Let I(y,j) be the line that
passes through y and parallel to the y; coordinate axis. Then [(y,j) N X is the line segment that is
contained in X'. Sample a point on I(y,j) N X uniformly, whose j-th coordinate is denoted as b. Set

z=y and z; =b.
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Step 2. Sample an u uniformly in (0,1). If u < f,(2)/f.(y) =P{Z(2) > ¢}/ P{Z(y) > ¢}, set
Yy=2z.
Step 3. If t =T, return y; otherwise go to Step 1.

Similar to the proof in Baumert et al. | (2009), it can be show that, as T"— oo, the probability

density function of the random output y converges to f,(x), regardless of y,. In practice, the
starting point y, is usually the current optimal solution. The MCCS scheme guarantees to sample
(approximately) a point every T steps. Therefore, it may become more efficient than the ARS
scheme when the acceptance rate in the ARS scheme becomes very low (i.e., lower than 1/7"). We
note that the sampling scheme, which can be used in the GPS-C algorithm, is not restricted to the

ARS or the MCCS scheme. Many other sampling schemes, e.g., the Gaussian mixture model of
(2018), can also be considered.
EC.5. Numerical Experiments

Section contains the parameter settings of the algorithms used in Section 6, and some

supplementary figures in the numerical experiments.

Function Value
N

Function Value
o

05 0.6

(a) Example 1 (b) Example 2

Figure EC.1 Two Examples of the Generated Sample Paths with po =1, 0® =4 and 0 = (80, 80)

Table EC.1 The Parameter Settings of the GPS-C Algorithm in Section 6.1
Problem Parameters
Two-dimensional | g =1, 6 =(80,80), 72 =4, r=10, \=0.25, =1, M =1,
Three-dimensional | ug =1, 8 = (40,40), 72 =9, r=10, A>=0.25, 72 =3, M =1,
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2
—6) + 10 <1— 1) cosxy + 10
8w

Branin problem

4r2 0

max T1,To) = — To —
—5§x1§10,0§3¢2§15g( » T2) [(

Six-hump problem

max _g(z1,22) = — [4a] — 2.1a1 4+ 1/32% + @120 — 425 + 4a3] .
—2<z1,72<2
Hills Problem
. 6 « 6
0.05 0.05
max  g(z1,29) = 10- sin”(0.057z, ) +10. 50 (0.057xs)

0<z1,29<100 92((x1—90)/50)2 92((x2—90)/50)2 *

10-Dimensional Rosenbrock Problem

9
g(.ﬁCl, P ,xlo) = —10_4 X Z((l — .’Ei)2 + 100(1)14_1 — IE?)2),

max
—10<z1,...,10<10 —
1=

d-Dimensional Weighted Sphere Problem

g(z1,...,xq) = —Z(Z X z3),

max
—5.12<21,...,24<5.12

Table EC.2 The Basic Information of the Test Problems
Problem Dimension | Optimal value Optimal solution
Branin 2 -0.398 (9.425,2.475) or (-3.142,12.275) or (3.142,2.275)
Six-hump 2 1.032 (0.090, -0.713) or (-0.090,0.713)
Hills 2 20.0 (90.0,90.0)
Rosenbrock 10 0 (1,1,...,1)
Weighted Sphere d 0 (0,0,...,0)
Table EC.3 The Parameter Settings of the GPS-C Algorithm in Section 6.2.1

Algorithm | Problem | Variance Parameters

GPS-C Branin equal |r=10, 72=0.01, M = —10, M =20, T =100

GPS-C Six-hump | equal =10, 72 =0.01, M = —10, M =20, T = 100

GPS-C Hills equal r=10, 72=0.25, M =0, M =40, T =100
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Table EC.4 The Parameter Settings of the Algorithms in Section 6.2.2

Algorithm | Problem | Variance Parameters
GPS-C Hills unequal ho=2, 3=0.009, r=10, 72 =4, M =0, M =40, T =100
ASR Hills unequal b=11,C=1,¢9=05,6=1, K=10,T=1
IHR-SO Hills unequal v=0.91, =0.009, s=0.9, k, =1
AP-SO Hills unequal v=0.91, 5=0.009, s=0.9, k., =1, R=1
GPS-C Rosenbrock | unequal | hg =5, 5 =0.009, r =10, 72=0.01, M = —100, M =10, T =100
ASR Rosenbrock | unequal b=11,C=1,¢9g=0.5,6=0.01, K=10,T=1
IHR-SO Rosenbrock | unequal v=0.91, =0.009, s=0.9, k., =1
AP-SO Rosenbrock | unequal v=0.91, 5=0.009, s=0.9, K, =1, R=0.4
Table EC.5 The Performance of ASR, SOSA and GPS-C Algorithms up to Different Sample Size on the Hills and
Rosenbrock Problems with Heteroscedastic Simulation Noise
Problem ASR AP-SO IHR-SO GPS-C
600 | 1000 | 2000 | 600 | 1000 | 2000 | 600 | 1000 | 2000 | 600 | 1000 | 2000
Hills 1.382 | 0.836 | 0.548 | 1.654 | 1.354 | 0.926 | 1.726 | 1.007 | 0.669 | 0.063 | 0.018 | 0.007
ASR AP-SO IHR-SO GPS-C
Problem

1000 | 2000 | 4000 | 1000 | 2000 | 4000 | 1000 | 2000 | 4000 | 1000 | 2000 | 4000

Rosenbrock | 0.451 | 0.201 | 0.062 | 0.869 | 0.138 | 0.051 | 0.379 | 0.273 | 0.141 | 0.043 | 0.034 | 0.026

True objective function value

True objective function value

Figure EC.2
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Table EC.6 The Parameter Settings of the GPS-C Algorithm in Section 6.3

Weighted Sphere problem Parameters
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