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E-Companion to “Gaussian Process Based Random Search for
Continuous Optimization via Simulation” by Wang, Hong,
Jiang and Shen

EC.1. Proof of Critical Lemmas

Section EC.1 contains the proofs of Lemmas 3 and 7-9, which are critical results in this paper.

EC.1.1. Proof of Lemma 3

First notice that kn(x,x) =Var
(
g(x)|{Xn,Gn}

)
≥ 0. From Equation (3), it is easy to see that

kn+1(x,x) = kn(x,x)−
[kn(x,x

n+1)]2

kn(xn+1,xn+1)+λ2(xn+1)
≤ kn(x,x), (EC.1)

which implies that kn(x,x) decreases in n. Also note from Equation (3) that reordering the sampling

decision-observation pairs (x1,G(x1)), . . . , (xn,G(xn)) does not alter kn(x,x). Fix an x∈X . Then,

for any ϵ > 0, x∈X ∩S(x, ϵ)⊂X , and

kn(x,x)≤ ksn(x,ϵ)(x,x)≤ τ 2 −
sn(x, ϵ)minx′∈X∩S(x,ϵ)[k0(x,x

′)]2

sn(x, ϵ)τ 2 +λ2
max

, (EC.2)

where the second inequality follows from Lemma 2. According to Assumption 3, [k0(x,x
′)]2 =

τ 4ρ2(|x−x′|). Since ∥x−x′∥ ≤ ϵ, Assumption 3 also implies that ρ(|x−x′|)≥ ρ(ϵ1), where 1∈Rd

is the vector of all ones. Following Equation (EC.2),

kn(x,x)≤ τ 2 − sn(x, ϵ)τ
4ρ2(ϵ1)

sn(x, ϵ)τ 2 +λ2
max

.

By Lemma 1, sn(x, ϵ) → ∞ almost surely as n → ∞, so limsupn→∞ kn(x,x) ≤ τ 2[1 − ρ2(ϵ1)],

with probability one. Sending ϵ → 0, we have ρ(ϵ1) → 1, thus limsupn→∞ kn(x,x) ≤ 0, with

probability one. Recall that kn(x,x) ≥ 0, then, with probability one, limsupn→∞ kn(x,x) =

lim infn→∞ kn(x,x) = 0, which implies kn(x,x)→ 0 almost surely as n→∞. □

EC.1.2. Proof of Lemma 7

Let γn, pn and rn be as defined in Lemma 6 with γ ∈ (0,1) and b− 1> a. Notice that kn(x,x)

decreases in n (see Equation (EC.1) in the proof of Lemma 3, and does not depend on the ordering

of the sampling decision-observation pairs (x1,G(x1)), . . . , (xn,G(xn)) (see Equation (3)). Fix an

x ∈ X . Notice that x ∈ X ∩S(x, rn)⊂X . By reordering the decision-observation pairs such that

the former sn(x, rn) points are within X ∩S(x, rn), we obtain

kn(x,x)≤ ksn(x,rn)(x,x)≤ τ 2 −
sn(x, rn)minx′∈X∩S(x,rn)[k0(x,x

′)]2

sn(x, rn)τ 2 +λ2
max

,
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where the second inequality follows from Lemma 2. Note that the unconditional covariance function

satisfies k0(x,x
′)≥ τ 2(1−Cr∥x−x′∥η) for constants Cr > 0, 0< η≤ 2 and any close pair of points.

By Lemma 6, with probability one, sn(x, rn) is Ω(npn) with γ ∈ (0,1) and b − a − 1 > 0, i.e.,

sn(x, rn)≥ cnpn for some c > 0. Then,

kn(x,x)≤ τ 2 − sn(x, rn)τ
4

sn(x, rn)τ 2 +λ2
max

× min
x′∈X∩S(x,rn)

(1−Cr∥x−x′∥η)

≤ τ 2 − cnpnτ 4

cnpnτ 2 +λ2
max

× min
x′∈X∩S(x,rn)

(1−Cr∥x−x′∥η)

≤ τ 2 − cnpnτ 4

cnpnτ 2 +λ2
max

× (1−Crr
η
n),

where the second inequality holds with probability one, and is due to the fact that xτ 2/(xτ 2+λ2
max)

increases in x> 0. Hence,

kn(x,x)≤ τ 2 − cnpnτ 4

cnpnτ 2 +λ2
max

×
(
1−Crr

η
n

)
=

cnpnτ 2

cnpnτ 2 +λ2
max

×
(
λ2
max

c
n−pn +Crτ

2rη0n
− η(1−γn)

d

)
≤ constant×

(
λ2
max

c
n−pn +Crτ

2rη0n
− η(1−γn)

d

)
≤ constant×n−min{pn, η(1−γn)

d },

for sufficiently large n. Thus we have that kn(x,x) is O(n−min{pn, η(1−γn)
d }) almost surely.

To obtain the maximum rate, we let pn = η(1−γn)

d
, i.e., γ − bε(n) = η(1−γ+aε(n))

d
, then it can

be obtained γ = [η + (aη + db)ε(n)]/(d + η). Take a = −db/η. It makes γ = η/(d + η), which

satisfies γ ∈ (0,1). Let b > η/(d+ η). Then b− a= b(d+ η)/η > 1, which satisfies b− 1>a. Finally,

min{pn, η(1−γn)

d
}= pn = γ− bε(n) = η/(d+ η)− bε(n), with b > η/(d+ η). □

EC.1.3. Proof of Lemma 8

For any n≥ 1, it can be obtained that

P{|µn(x)− g(x)|> ϵn} ≤ P{µn(x)− g(x)> ϵn}+P{µn(x)− g(x)<−ϵn}. (EC.3)

Applying the Chernoff bound, we have

P{µn(x)− g(x)> ϵn}=E [P{µn(x)− g(x)> ϵn|{Xn,Gn}}]

≤E
[
min
t>0

e−tϵn ·E[et(µn(x)−g(x))|{Xn,Gn}]
]

=E
[
min
t>0

e−tϵn · e t2

2 kn(x,x)
]

=E
[
min
t>0

e
t2

2 kn(x,x)−tϵn
]
,
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where the second equality is due to g(x)|{Xn,Gn} ∼N (µn(x), kn(x,x)) and the moment-generating

function of normal random variable. Notice that t2

2
kn(x,x)− tϵn is minimized at t= ϵn/kn(x,x)

with value −ϵ2n/(2kn(x,x)), then

P{µn(x)− g(x)> ϵn} ≤E
[
e−ϵ2n/(2kn(x,x))

]
. (EC.4)

In the similar way, we can also get

P{µn(x)− g(x)<−ϵn} ≤E
[
e−ϵ2n/(2kn(x,x))

]
. (EC.5)

Combining Equations (EC.3), (EC.4) and (EC.5) finishes the proof. □

EC.1.4. Proof of Lemma 9

Step 1. Arbitrarily choose an optimal solution x∗ ∈X ∗. For j = 1,2, . . . , d, let ġ(x)j be the sample

path of the derivative surface ḟGP(x)j. According to the mean value theorem, it can be obtained

that

g(x) = g(x∗)+∇g(ξ)⊺(x−x∗), (EC.6)

where ∇g(x) = (ġ(x)1, . . . , ġ(x)d)
⊺ denotes the gradient of g(x) and ξ ∈ X (Fitzpatrick 2009,

Theorem 15.29). By the Cauchy-Schwarz inequality, it then follows that

|g(x∗)− g(x)|=
∣∣∇g(ξ)⊺(x−x∗)

∣∣≤ ∥∇g(ξ)∥∥x∗ −x∥. (EC.7)

Recall that X is compact under Assumption 6. Based on Assumption 5, ḟGP(x)j has continuous

sample paths on X , for all j = 1, . . . , d, and is thus almost surely bounded on X (Adler and Taylor

2007, Theorem 1.5.4). So,

ġ∗ = max
j=1,...,d

{
sup
x∈X

|ġ(x)j|
}
,

is a well defined random variable. Since

∥∇g(ξ)∥=

[
d∑

j=1

(ġ(ξ)j)
2

]1/2
≤
√
dġ∗,

then

|g(x∗)− g(x)| ≤
√
dġ∗∥x∗ −x∥. (EC.8)

So, we have

P (∩n
i=1{g∗ − g(xi)> ϵn})

=P (∩n
i=1{g(x∗)− g(xi)> ϵn})

≤P
(
∩n

i=1{
√
dġ∗∥x∗ −xi∥> ϵn}

)
≤P

(
∩n

i=1

{
∥x∗ −xi∥>

ϵn
(logn)1/d

})
+P

(√
dġ∗ ≥ (logn)1/d

)
. (EC.9)
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We now establish the bounds for the two terms respectively.

Step 2. For the first term in the right-hand side of Equation (EC.9), let δn(ϵn) = ϵn/(logn)
1/d,

and construct a ball S(x∗, δn(ϵn)). Then, we can have

P
(
∩n

i=1

{
∥x∗ −xi∥>

ϵn
(logn)1/d

})
= 1−P

(
∪n

i=1{∥x∗ −xi∥ ≤ ϵn/(logn)
1/d}

)
= 1−P

(
n∑

i=1

1{xi∈S(x∗,δn(ϵn))} > 0

)
. (EC.10)

By Lemma 5, for small enough δn(ϵn)> 0, ν(S(x∗, δn(ϵn)))∩X )≥Cν(S(x∗, δn(ϵn))). Since each

design point xi ∈Xn is generated from density function ψi, which satisfies ψi ≥ α > 0 on X , for

i= 1, . . . , n,

P{xi ∈ S(x∗, δn(ϵn))} ≥ αν(S(x∗, δn(ϵn))∩X )

≥ αCν(S(x∗, δn(ϵn))) =
αCπ

d
2 δn(ϵn)

d

Γ(d
2
+1)

,

where the equality is due to the volume formula of a d-dimensional ball. Let Bi, i= 1, . . . , n, be

i.i.d. Bernoulli random variables with parameter αCπd/2δn(ϵn)
d

Γ(d/2+1)
∈ (0,1). Then,

P

(
n∑

i=1

1{xi∈S(x∗,δn(ϵn))} > 0

)
≥ P

(
n∑

i=1

Bi > 0

)
= 1−

(
1− αCπ

d
2 δn(ϵn)

d

Γ(d
2
+1)

)n

. (EC.11)

Combing Equations (EC.10) and (EC.11), we have

P
(
∩n

i=1{∥x∗ −xi∥>
ϵn

(logn)1/d
}
)
≤

(
1− αCπ

d
2 δn(ϵn)

d

Γ(d
2
+1)

)n

≤ exp

{
−αCπ

d
2 δn(ϵn)

dn

Γ(d
2
+1)

}

= exp

{
− αCπ

d
2 ϵdnn

Γ(d
2
+1) logn

}
, (EC.12)

where the second inequality is due to ex ≥ 1+x.

Step 3. For the second term in the right-hand side of Equation (EC.9), we need to bound the tail

probability of ġ∗. As mentioned before, ḟGP(x)j is a Gaussian process with continuous and thus

bounded sample paths on X with probability one, for each j = 1, . . . , d. Then by the Borell-TIS

inequality (Adler and Taylor 2007, Section 2.1), for j = 1, . . . , d, and sufficiently large t,

P
{
sup
x∈X

(ġ(x)j − µ̇0(x)j)> t

}
≤ exp

{
Cjt−

t2

2σ2
j

}
,

where Cj is a constant depending only on E[supx∈X (ġ(x)j − µ̇0(x)j)], and σ
2
j = supx∈X E[(ġ(x)j −

µ̇0(x)j)
2]. Let aj = supx∈X |µ̇0(x)j|. Notice that supx∈X |ġ(x)j − µ̇0(x)j|+ aj ≥ supx∈X (|ġ(x)j| −

|µ̇0(x)j|)+ aj ≥ supx∈X |ġ(x)j|. So, for sufficiently large t,

P
{
sup
x∈X

|ġ(x)j|> t
}
≤ P

{
sup
x∈X

|ġ(x)j − µ̇0(x)j|+ aj > t

}
= P

{
sup
x∈X

|ġ(x)j − µ̇0(x)j|> t− aj

}



e-companion to Wang, Hong, Jiang and Shen: Gaussian Process Based Random Search Algorithms ec5

≤ 2P
{
sup
x∈X

(ġ(x)j − µ̇0(x)j)> t− aj

}
≤ 2exp

{
Cj(t− aj)−

(t− aj)
2

2σ2
j

}
. (EC.13)

Replacing t with (logn)1/d/
√
d where n is sufficiently large, we have

P
(√

dġ∗ ≥ (logn)
1
d

)
= P

(
max

j=1,...,d

{
sup
x∈X

|ġ(x)j|
}
≥ (logn)

1
d /

√
d

)
≤

d∑
j=1

P
(
sup
x∈X

|ġ(x)j| ≥ (logn)
1
d /

√
d

)

≤ 2
d∑

j=1

exp

Cj

((logn)1/d√
d

− aj

)
−

(
(logn)1/d√

d
− aj

)2

2σ2
j

, (EC.14)

where the second inequality is by Equation (EC.13). Finally, combining Equations (EC.9), (EC.12)

and (EC.14), we have

P (∩n
i=1{g∗ − g(xi)> ϵn})

≤ exp

{
− αCπ

d
2 ϵdnn

Γ(d
2
+1) logn

}
+2

d∑
j=1

exp

Cj

((logn)1/d√
d

− aj

)
−

(
(logn)1/d√

d
− aj

)2

2σ2
j

,
for sufficiently large n. So the proof is completed. □

EC.2. Proof of Other Lemmas

Section EC.2 contains the proofs of Lemmas 6 and 10.

EC.2.1. Proof of Lemma 6

Since γn = γ− aε(n)→ γ as n→∞, it can be obtained that rn → 0. Notice that γ ∈ (0,1). Then,

there exists some N ∈N such that γn ∈ (0,1) and rn/(3
√
d)≤ ϵ for all n≥N , where ϵ is a sufficiently

small positive constant which satisfies Equation (7) in Lemma 5. Suppose that for each n>N , we

partition each coordinate of Rd into segments of length rn/(3
√
d), and by doing so we obtain closed

subsets, which are referred as grid boxes that together cover Rd. For each x∈X , let Tx be the grid

box containing x. Define Hx as the union of Tx and all the other grid box adjacent to Tx (i.e., with

common vertex, edge or surface). Under the Euclidean distance used in this paper, Hx covers all

points which are at most rn/(3
√
d) from Tx, and hence it can be obtained that S(x, rn/(3

√
d))⊂Hx.

Thus, for n≥N ,

ν(Hx ∩X )≥ ν(S(x, rn/(3
√
d))∩X )≥C1 · ν(S(x, rn/(3

√
d))) =C2 · (rn)d =Ω

(
n−(1−γn)

)
, (EC.15)
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where C1 and C2 are positive constants, the second inequality follows from Lemma 5, and the last

equality follows from the choice that rn = r0n
− 1−γn

d .

Because X is bounded by Assumption 6 and rn is of order Ω(n− 1−γn
d ), each dimension needs

to be partitioned into O(n
1−γn

d ) segments, and thus the total number of grid boxes Tx necessary

to cover X is O(n1−γn). Because Tx ⊂Hx for each x ∈X , obviously X can be covered with a set

of Hx, whose cardinality is l(n) =O(n1−γn). Denote such set as H(n) = {Hk(n)}l(n)k=1. By Equation

(EC.15), it can be obtained that for each n≥N , ν(Hk(n)∩X ) is Ω(n−(1−γn)) for all k. Note that for

each n≥N and x∈X , we can find 1≤ k≤ l(n) such that x∈Hk(n). Also note that the maximum

distance between any two points in Hk(n) is rn. We can obtain that Hk(n)∩X ⊂S(x, rn) for each

x ∈Hk(n). To summarize, for sufficiently large n, (i.e., n ≥N), we obtain the three properties

about H(n):

(i) l(n) is O(n1−γn).

(ii) ν(Hk(n)∩X ) is Ω(n−(1−γn)) for all k, where ν(·) is the d-dimensional volume.

(iii) For x ∈ X , if Hk(n) is the box in H(n) such that x ∈Hk(n), then Hk(n) ∩ X ⊂ S(x, rn) ⊆

S(x, ri), i= 1, . . . , n.

Recall that pn = γ− bε(n). Let s(n) be an integer-valued function of n with order Θ(npn), and

Nk(n) =
∑n

i=1 1xi∈Hk(n)∩X be the number of sampled points that fall into Hk(n)∩X among all n

points. By the property (iii), if x∈Hk(n),

{Nk(n)≥ s(n)} ⊆ {sn(x, rn)≥ s(n)}.

Because H(n) covers X and property (iii) holds for all x∈X , we can then have

D(n) =

l(n)⋂
k=1

{Nk(n)≥ s(n)} ⊆
⋂
x∈X

{sn(x, rn)≥ s(n)}.

Taking complement set on both sides yields

D(n)c =

l(n)⋃
k=1

{Nk(n)< s(n)} ⊇
⋃
x∈X

{sn(x, rn)< s(n)}. (EC.16)

Let us first look at the probability P{Nk(n)< s(n)}. For a fixed n, consider Hk(n)∈H(n). Since

each design point xi ∈Xn is generated from density ψi ≥ α> 0 on X , for i= 1, . . . , n, then

P{xi ∈Hk(n)} ≥ αν(X ∩Hk(n)).

Notice that ν(Hk(n)∩X )≥ c0
n1−γn for some constant c0 > 0, from the property (ii). Let Bi, i= 1,2, . . .,

be independent Bernoulli random variables with parameter αc0
n1−γn . So, by letting c= 1

αc0
,

P{Nk(n)< s(n)}= P
{ n∑

i=1

1xi∈Hk(n)∩X < s(n)

}
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≤ P
{ n∑

i=1

Bi < s(n)

}

≤
s(n)−1∑
j=0

(
n

j

)(
1

cn1−γn

)j(
1− 1

cn1−γn

)n−j

.

Hence,

P{D(n)c}= P

(
l(n)⋃
k=1

{Nk(n)< s(n)}

)
≤

l(n)∑
k=1

P{Nk(n)< s(n)}

≤ l(n)

s(n)−1∑
j=0

(
n

j

)(
1

cn1−γn

)j(
1− 1

cn1−γn

)n−j

= l(n)

(
1− 1

cn1−γn

)n s(n)−1∑
j=0

(
n

j

)(
cn1−γn − 1

)−j
.

By the property (i), l(n) ≤ Cn1−γn for some constant C > 0. Recall that s(n) is Θ(npn), so

s(n)≤ ānpn for some constant ā > 0. We then follow the similar steps as in the proof of Lemma 4

in Andradóttir and Prudius (2010) to show

∞∑
n=n0

P{D(n)c}<∞, (EC.17)

for sufficiently large n0. Note that pn = γ − bε(n), so pn → γ ∈ (0,1) as n → ∞. Recall that

γn → γ ∈ (0,1) as n→∞, too. Hence, let n be sufficiently large so that s(n)≤ n/2 and cn1−γn > 2.

Then, for j < s(n)≤ n/2,
(
n
j

)
≤
(

n
s(n)

)
≤ ns(n) ≤ nānpn

. So,

P{D(n)c} ≤Cn1−γn+ānpn

(
1− 1

cn1−γn

)n s(n)−1∑
j=0

(
cn1−γn − 1

)−j
.

Since cn1−γn > 2, then

s(n)−1∑
j=0

(
cn1−γn − 1

)−j ≤
∞∑
j=0

( 1

cn1−γn − 1

)j

=
cn1−γn − 1

cn1−γn − 2
.

Thus,

P{D(n)c} ≤Cn1−γn+ānpn

(
1− 1

cn1−γn

)n

× cn1−γn − 1

cn1−γn − 2
≤ constant×n1+ānpn

(
1− 1

cn1−γn

)n

,

for sufficiently large n. Observe that n1−γn → ∞ as n→ ∞ since γn → γ ∈ (0,1). Then,
(
1 +

1/(−cn1−γn)
)−cn1−γn

→ e as n→∞, which implies that
(
1+1/(−cn1−γn)

)cn1−γn

→ 1/e < 1. So, there

exists 0<β < 1 such that for sufficiently large n,
(
1+1/(−cn1−γn)

)n1−γn

≤ β, which further implies

that
(
1−1/(cn1−γn)

)n ≤ βnγn
. Note that b−1>a. We can find δ > 0 such that b−1−δ > a. Observe
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that log
(
n1+ānpn)

= logn+ ānγ−(b−1)ε(n). It can be obtained that log
(
n1+ānpn)

/nγ−(b−1−δ)ε(n) → 0

as n→∞, which implies that n1+ānpn ≤ en
γ−(b−1−δ)ε(n)

for sufficiently large n. Then,

P{D(n)c} ≤ constant× en
γ−(b−1−δ)ε(n)

×βnγn
= constant× exp

(
nγ−(b−1−δ)ε(n) +nγ−aε(n) logβ

)
≤ constant× exp

(
−nγ−(b−1−δ)ε(n)

)
,

for sufficiently large n, where the second inequality comes from the facts that logβ < 0 and

b− 1− δ > a. Notice that γ− (b− 1− δ)ε(n)→ γ ∈ (0,1) as n→∞. So we can find t ∈ (0,1) such

that t≤ γ− (b− 1− δ)ε(n) for sufficiently large n. Thus,

P{D(n)c} ≤ constant× exp
(
−nγ−(b−1−δ)ε(n)

)
≤ constant× exp(−nt).

So, to prove Equation (EC.17), by the integral test for convergence, it suffices to prove
∫∞
n0
e−xt dx<∫∞

0
e−xt dx<∞, for t∈ (0,1). Note that by the change of variable in integral,∫ ∞

0

e−xt dx=

∫ ∞

0

1

t
y

1
t−1e−y dy=

1

t
Γ(

1

t
)<∞,

where Γ(·) is the gamma function. Thus, Equation (EC.17) is proved.

According to Equations (EC.16) and (EC.17), for any x∈X ,

∞∑
n=n0

P{sn(x, rn)< s(n)} ≤
∞∑

n=n0

P

(⋃
x∈X

{sn(x, rn)< s(n)}

)
≤

∞∑
n=n0

P{D(n)c}<∞,

for sufficiently large n0. Then, by Borel-Cantelli lemma, P{sn(x, rn)< s(n) infinitely often}= 0.

Since s(n) is Θ(npn), we then immediately have P{sn(x, rn) is Ω(npn)}= 1. □

EC.2.2. Proof of Lemma 10

Let Z ∼N (0,1), then

P{Z(x)> c}= P{µcap
n (x)+ [kcapn (x,x)]1/2Z > c}

= P
{
Z >

c−µcap
n (x)

[kcapn (x,x)]1/2

}
≥ P

{
Z >

M −M

τ

}
= 1−Φ((M −M)/τ),

where the inequality is due to the facts that c≤M , µcap
n (x)≥M , and kcapn (x,x)≥ τ 2. Besides, since

µcap
n (x)≤ c, P{Z(x)> c} ≤ 0.5. Hence,

fn(x) =
P{Z(x)> c}∫

X P{Z(x)> c}dz
≥ 1−Φ((M −M)/τ)∫

X 0.5 dz
= α.

□
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EC.3. Analyses of Some Correlation Functions

Section EC.3 analyzes the sample path differentiability and lower bound of several correlation

functions.

The sample path differentiability

The Gaussian correlation function

ρ(x,x′) = ρ(δ) = exp
{
−

d∑
j=1

θjδ
2
j

}
with δ = x− x′. It is well known that the sample paths from a Gaussian process having this

correlation function are infinitely differentiable almost surely. Moreover, the correlation function of

the first-order derivative surface ρ̈j(δ)/ρ̈j(0) = (1− 2θjδ
2
j )ρ(δ) (a function of δ) is still stationary.

Therefore, the Gaussian process with Gaussian correlation function satisfies Assumption 5.

The Matérn correlation function

ρv(x,x
′) = ρ(δ) =

d∏
j=1

exp

(
−
√
2v|δj|
lj

)
Γ(t+1)

Γ(2t+1)

t∑
i=0

(t+ i)!

i!(t− i)!

(√
8v|δj|
lj

)t−i

.

with δ = x−x′, lj > 0 and v = t+1/2 (t is a positive integer). It is well known that the sample

paths from a one-dimensional Gaussian process having Matérn correlation function are continuously

differentiable almost surely of order ⌈v⌉− 1 (Santner et al. 2003, p. 43-44). In addition, it can be

checked that the one-dimensional Matérn correlation function (with v being a half integer and greater

than 1) and the correlation function of its first-order derivative surface all satisfy Assumption 3 (iii).

The d-dimensional Matérn correlation function is the product of the one-dimensional correlation

functions. It can be verified that the Gaussian process with this d-dimensional Matérn correlation

function still has continuously differentiable sample paths. Therefore, the Gaussian process having

Matérn correlation function with v= t+1/2 (t is a positive integer) satisfies Assumption 5.

The rational quadratic function

ρ(x,x′) = ρ(δ) =

(
1+

∑d

j=1 δ
2
j

2αl2

)−α

with δ = x − x′ and α, l > 0. By taking twice differentiation, we can obtain that ρ̈j(δ) =

− 1
l2

(
1+

∑d
j=1 δ2j
2αl2

)−α−1

+
(α+1)δ2j

αl4

(
1+

∑d
j=1 δ2j
2αl2

)−α−2

exists and is continuous with ρ̈j(0) = −1/l2.

Then, it can be checked that ρ̈j(δ)/ρ̈j(0) satisfies Assumption 3 (iii). So it can be concluded that the

sample paths of the Gaussian process having this correlation function are continuously differentiable

almost surely (Abrahamsen 1997). Moreover, the correlation function ρ̈j(δ)/ρ̈j(0) is still stationary.

Therefore, the Gaussian process having rational quadratic function satisfies Assumption 5.

The Lower Bound of Correlation Functions
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The power exponential correlation function

ρ(x,x′) = exp
{
−

d∑
j=1

θj|xj −x′
j|η
}

with θj > 0 and 0< η≤ 2. Define θmax be the maximum among θj , j = 1,2, . . . , d, and ∥·∥η is a norm

on Rd such that ∥x∥η = (
∑d

j=1 |xj|η)1/η. Since the space Rd is of finite dimension, any norm ∥·∥η1 is

equivalent to any other norm ∥·∥η2 , i.e., ∥x∥η1 ≤Cη1η2∥x∥η2 for a positive number Cη1η2 and all x

in X (Kreyszig 1978). Then, we can have
∑d

j=1 θj|xj −x′
j|η ≤ θmax∥x−x′∥ηη ≤ θmaxCη2∥x−x′∥η =

Cr∥x−x′∥η for x′ in S(x, rn). According to ex ≥ 1+ x, we can obtain ρ(x,x′)≥ 1−Cr∥x−x′∥η.
We note that the power exponential correlation function is the Gaussian correlation function with

η= 2.

When v is half integer, i.e., v = t+ 1/2, where t is a positive integer, the Matérn correlation

function is

ρv(x,x
′) =

d∏
j=1

exp

(
−
√
2v
∣∣xj −x′

j

∣∣
lj

)
Γ(t+1)

Γ(2t+1)

t∑
i=0

(t+ i)!

i!(t− i)!

(√
8v
∣∣xj −x′

j

∣∣
lj

)t−i

.

It can be verified that

ρv(x,x
′) =

d∏
j=1

exp

(
−
√
2v
∣∣xj −x′

j

∣∣
lj

)
Γ(t+1)

Γ(2t+1)

t∑
i=0

(t+ i)!

i!(t− i)!

(√
8v
∣∣xj −x′

j

∣∣
lj

)t−i

=
d∏

j=1

1+

√
2v
∣∣xj −x′

j

∣∣
lj

+
Γ(t+1)

Γ(2t+1)

t−2∑
i=0

(t+ i)!

i!(t− i)!

(√
8v
∣∣xj −x′

j

∣∣
lj

)t−i
 · exp

(
−
√
2v

d∑
j=1

∣∣xj −x′
j

∣∣
lj

)

≥
d∏

j=1

(
1+

√
2v
∣∣xj −x′

j

∣∣
lj

)
· exp

(
−
√
2v

d∑
j=1

∣∣xj −x′
j

∣∣
lj

)

≥

(
1+

d∑
j=1

√
2v
∣∣xj −x′

j

∣∣
lj

)(
1−

d∑
j=1

√
2v
∣∣xj −x′

j

∣∣
lj

)

≥ 1− 2v

(
d∑

j=1

∣∣xj −x′
j

∣∣
lj

)2

≥ 1− 2v

lmin

(
d∑

j=1

∣∣xj −x′
j

∣∣)2

≥ 1−C12

2v

lmin

∥x−x′∥2,

where lmin =minj=1,··· ,d lj and the last inequality is due to the equivalence of the norm ∥·∥η on finite

dimensional space Rd.

The quadratic covariance function

ρ(x,x′) =

(
1+

∑d

j=1

∣∣xj −x′
j

∣∣2
2αl2

)−α

,
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with α, l > 0. It can also be verified that

ρ(r) =
1(

1+
∑d

j=1(xj−x′j)
2

2αl2

)α

≥ 1

(e
∑d

j=1(xj−x′j)
2/2αl2)α

= e
−

∑d
j=1(xj−x′j)

2

2l2

≥ 1−
∑d

j=1(xj −x′
j)

2

2l2

= 1− 1

2l2
∥x−x′∥2.

EC.4. Sampling Scheme

In the following, we will describe the acceptance-rejection sampling (ARS) scheme and the Markov

chain coordinate sampling (MCCS) scheme in details. According to Equation (15), we have that

P{Z(x)> c} ≤ P{Z(x)>µcap
n (x)}= 1/2, and

fn(x) =
P{Z(x)> c}∫

X P{Z(z)> c} dz
≤ (1/2)ν(X )∫

X P{Z(z)> c} dz
· 1

ν(X )
.

Since ν(X )/
∫
X P{Z(z)> c} dz is a constant and 1

ν(X )
is the probability density of the uniform

distribution on X , it is easy to see that the following ARS scheme can output a sample following

the density fn(x).

ARS Scheme

Step 1. Generate a sample y uniformly in X and u uniformly in (0,1).

Step 2. If u≤ 2P{Z(y)> c}, return y; otherwise, go to Step 1.

The ARS algorithm avoids the calculation of the integration in the denominator of Equation (15).

However, when the sampling probabilities are concentrated on small regions, the acceptance rate

may be very low, and thus impacts the efficiency of the ARS scheme. Therefore, a MCCS scheme is

proposed.

MCCS Scheme

Step 0. Let t= 0, y= y0. Specify the iteration number T .

Step 1. Let t= t+ 1. Sample an integer j from 1 to d uniformly. Let l(y, j) be the line that

passes through y and parallel to the yj coordinate axis. Then l(y, j)∩X is the line segment that is

contained in X . Sample a point on l(y, j)∩X uniformly, whose j-th coordinate is denoted as b. Set

z = y and zj = b.
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Step 2. Sample an u uniformly in (0,1). If u ≤ fn(z)/fn(y) = P{Z(z) > c}/P{Z(y) > c}, set

y= z.

Step 3. If t= T , return y; otherwise go to Step 1.

Similar to the proof in Baumert et al. (2009), it can be show that, as T →∞, the probability

density function of the random output y converges to fn(x), regardless of y0. In practice, the

starting point y0 is usually the current optimal solution. The MCCS scheme guarantees to sample

(approximately) a point every T steps. Therefore, it may become more efficient than the ARS

scheme when the acceptance rate in the ARS scheme becomes very low (i.e., lower than 1/T ). We

note that the sampling scheme, which can be used in the GPS-C algorithm, is not restricted to the

ARS or the MCCS scheme. Many other sampling schemes, e.g., the Gaussian mixture model of Sun

et al. (2018), can also be considered.

EC.5. Numerical Experiments

Section EC.5 contains the parameter settings of the algorithms used in Section 6, and some

supplementary figures in the numerical experiments.
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Figure EC.1 Two Examples of the Generated Sample Paths with µ0 = 1, σ2 = 4 and θ= (80,80)

Table EC.1 The Parameter Settings of the GPS-C Algorithm in Section 6.1

Problem Parameters

Two-dimensional µ0 = 1, θ= (80,80), τ2 = 4, r= 10, λ2 = 0.25, τ2 = 1, M = 1, M = 20, T = 100

Three-dimensional µ0 = 1, θ= (40,40), τ2 = 9, r= 10, λ2 = 0.25, τ2 = 3, M = 1, M = 40, T = 100
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Branin problem

max
−5≤x1≤10,0≤x2≤15

g(x1, x2) =−

[(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+10

(
1− 1

8π

)
cosx1 +10

]
.

Six-hump problem

max
−2≤x1,x2≤2

g(x1, x2) =−
[
4x2

1 − 2.1x4
1 +1/3x6

1 +x1x2 − 4x2
2 +4x4

2

]
.

Hills Problem

max
0≤x1,x2≤100

g(x1, x2) = 10 · sin
6(0.05πx1)

22((x1−90)/50)2
+10 · sin

6(0.05πx2)

22((x2−90)/50)2
.

10-Dimensional Rosenbrock Problem

max
−10≤x1,...,x10≤10

g(x1, . . . , x10) :=−10−4 ×
9∑

i=1

((1−xi)
2 +100(xi+1 −x2

i )
2),

d-Dimensional Weighted Sphere Problem

max
−5.12≤x1,...,xd≤5.12

g(x1, . . . , xd) :=−
d∑

i=1

(i×x2
i ),

Table EC.2 The Basic Information of the Test Problems

Problem Dimension Optimal value Optimal solution
Branin 2 -0.398 (9.425,2.475) or (-3.142,12.275) or (3.142,2.275)
Six-hump 2 1.032 (0.090, -0.713) or (-0.090,0.713)
Hills 2 20.0 (90.0,90.0)
Rosenbrock 10 0 (1,1,. . . ,1)
Weighted Sphere d 0 (0,0,. . . ,0)

Table EC.3 The Parameter Settings of the GPS-C Algorithm in Section 6.2.1

Algorithm Problem Variance Parameters

GPS-C Branin equal r= 10, τ2 = 0.01, M =−10, M = 20, T = 100

GPS-C Six-hump equal r= 10, τ2 = 0.01, M =−10, M = 20, T = 100

GPS-C Hills equal r= 10, τ2 = 0.25, M = 0, M = 40, T = 100
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Table EC.4 The Parameter Settings of the Algorithms in Section 6.2.2

Algorithm Problem Variance Parameters

GPS-C Hills unequal h0 = 2, β = 0.009, r= 10, τ2 = 4, M = 0, M = 40, T = 100
ASR Hills unequal b= 1.1, C = 1, g= 0.5, δ= 1, K = 10, T = 1
IHR-SO Hills unequal γ = 0.91, β = 0.009, s= 0.9, κr = 1
AP-SO Hills unequal γ = 0.91, β = 0.009, s= 0.9, κr = 1, R= 1

GPS-C Rosenbrock unequal h0 = 5, β = 0.009, r= 10, τ2 = 0.01, M =−100, M = 10, T = 100
ASR Rosenbrock unequal b= 1.1, C = 1, g= 0.5, δ= 0.01, K = 10, T = 1
IHR-SO Rosenbrock unequal γ = 0.91, β = 0.009, s= 0.9, κr = 1
AP-SO Rosenbrock unequal γ = 0.91, β = 0.009, s= 0.9, κr = 1, R= 0.4

Table EC.5 The Performance of ASR, SOSA and GPS-C Algorithms up to Different Sample Size on the Hills and

Rosenbrock Problems with Heteroscedastic Simulation Noise

Problem
ASR AP-SO IHR-SO GPS-C

600 1000 2000 600 1000 2000 600 1000 2000 600 1000 2000
Hills 1.382 0.836 0.548 1.654 1.354 0.926 1.726 1.007 0.669 0.063 0.018 0.007

Problem
ASR AP-SO IHR-SO GPS-C

1000 2000 4000 1000 2000 4000 1000 2000 4000 1000 2000 4000
Rosenbrock 0.451 0.201 0.062 0.869 0.138 0.051 0.379 0.273 0.141 0.043 0.034 0.026
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Figure EC.2 Performance of the Revised GPS-C Algorithm on the Hills Problem and Rosenbrock Problem

Table EC.6 The Parameter Settings of the GPS-C Algorithm in Section 6.3

Weighted Sphere problem Parameters

d-dimensional r= 10, τ2 = 0.2, M =−1000, M = 10, T = 100
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