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Abstract. Random search is an important category of algorithms to solve continuous opti
mization via simulation problems. To design an efficient random search algorithm, the 
handling of the triple “E” (i.e., exploration, exploitation and estimation) is critical. The first 
two E’s refer to the design of sampling distribution to balance explorative and exploitative 
searches, whereas the third E refers to the estimation of objective function values based on 
noisy simulation observations. In this paper, we propose a class of Gaussian process-based 
random search (GPRS) algorithms, which provide a new framework to handle the triple 
“E.” In each iteration, algorithms under the framework build a Gaussian process surrogate 
model to estimate the objective function based on single observation of each sampled solu
tion and randomly sample solutions from a lower-bounded sampling distribution. Under 
the assumption of heteroscedastic and known simulation noise, we prove the global con
vergence of GPRS algorithms. Moreover, for Gaussian processes having continuously dif
ferentiable sample paths, we show that the rate of convergence of GPRS algorithms can be 
no slower than Op(n�1=(d+2)). Then, we introduce a specific GPRS algorithm to show how 
to design an integrated GPRS algorithm with adaptive sampling distributions and how 
to implement the algorithm efficiently. Numerical experiments show that the algorithm 
has good performances, even for problems where the variances of simulation noises are 
unknown.
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1. Introduction
Stochastic simulation is an important modeling tool 
for complex systems. It is widely used in the area of 
operations research and management science to model 
and to optimize the performances of supply chain net
works, healthcare systems, transportation systems, 
etc. This approach of stochastic optimization is often 
called optimization via simulation (OvS), where deci
sion variables are typically the design parameters of 
the simulation models. When the decision variables 
are continuous, the problem is known as a continuous 
optimization via simulation (COvS) problem.

Examples of COvS problems include inventory-level 
optimization to minimize the total expected production 
cost, appointment time optimization to minimize the total 
expected patient waiting time, traffic signal optimization 

to optimize the throughput of a transportation hub, 
and many others. Readers may refer to Amaran et al. 
(2016) for a comprehensive introduction to COvS and 
the related algorithms. Recently, parameter tuning is 
gaining a lot of research interest, especially in the area 
of machine learning where complicated stochastic 
black-box models need to be tuned. It is interesting to 
note that many of these problems may be viewed as 
COvS problems as well, where the stochastic black- 
box model and a call to the model may be treated as a 
stochastic simulation model and an experiment of the 
model, respectively. Readers may refer to Yu and Zhu 
(2020) for a comprehensive introduction to parameter 
tuning and the related algorithms.

Many types of algorithms have been proposed to 
solve COvS problems, including stochastic approximation 
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algorithms (Robbins and Monro 1951, Kiefer and Wolfo
witz 1952, Spall 1992, Kushner and Yin 1997), response 
surface methodologies (Box and Wilson 1951, Kleijnen 
1998, Chang et al. 2013), and random search algorithms 
(Andradóttir 2006, 2015). Different types of algorithms 
offer different types of convergence guarantees and are 
applicable to different settings of COvS problems. In this 
paper, we focus on random search algorithms, which typi
cally do not require gradient information, have global con
vergence, and work for a wide range of COvS problems.

The key to designing efficient random search algo
rithms is the handling of the “triple E” (i.e., exploration, 
exploitation, and estimation) (Andradóttir and Prudius 
2009). The first two E’s focus on the designing of sam
pling distributions used in the algorithm iterations to 
place the search effort so that it can balance global and 
local searches, also known as explorative and exploit
ative searches. The third E focuses on the estimation of 
objective values using noisy simulation outputs. Next, 
we briefly review the literature on random search 
COvS algorithms along these two lines (i.e., designing 
of sampling distributions and estimation of objective 
values) and position our work relative to the literature.

In terms of sampling distributions, Sun et al. (2014) 
divide random search discrete optimization via simula
tion (DOvS) algorithms into four classes (exploration 
based, exploitation based, combined, and integrated) 
based on their approaches to handle the exploration 
and exploitation trade-off. Their classification is also 
applicable to random search COvS algorithms. Explora
tion-based algorithms include the simple random search 
algorithm of Chia and Glynn (2013) and the grid search 
algorithms of Ensor and Glynn (1997) and Yakowitz 
et al. (2000), which represent the feasible region by a 
set of either randomly generated solutions or equally 
spaced grid points and evaluate all of them. Exploita
tion-based algorithms include the surrogate-based prom
ising area search algorithm of Fan and Hu (2018), 
which samples only from the most promising area in 
each iteration. Based on Sun et al. (2014, p. 1417), 
“combined algorithms typically focus on exploitative 
search while either adding a fixed amount of effort in 
each iteration or assigning a fixed sequence of iterations 
to conduct explorative search,” and “integrated algo
rithms typically have an integrated sampling distribu
tion governing the search effort in each iteration 
instead of separating the exploitation and exploration 
as in the combined algorithms.” The adaptive sampling 
and resampling (ASR) algorithm of Andradóttir and 
Prudius (2010) is an example of the combined algo
rithms. It samples from the feasible region in each itera
tion from a predetermined sampling distribution and 
adds resampling from some of the previously visited 
solutions. The model reference adaptive search al
gorithm of Hu et al. (2007) and the Gaussian mixture 
model-based random search of Sun et al. (2018) are 

both examples of integrated algorithms. In each itera
tion, they both build surrogate models based on the 
simulation observations collected through the iteration 
and construct a sampling distribution to guide the ran
dom search. The use of surrogate models in guiding 
search is also very common in Bayesian optimization 
algorithms, and the Gaussian process surrogate model 
(also known as kriging) is very popular. There are 
kriging-based Bayesian optimization algorithms for 
both deterministic and noisy problems, including the P 
algorithm of Calvin and Žilinskas (1999), the efficient 
global optimization (EGO) algorithm of Jones et al. 
(1998), the sequential kriging optimization (SKO) algo
rithm of Huang et al. (2006), the knowledge gradient 
for continuous parameters (KGCP) algorithm of Scott 
et al. (2011), etc. These algorithms use a fixed sampling 
criterion (e.g., the expected improvement) to sample a 
solution deterministically in each iteration based on the 
surrogate model and hence, adopt totally different sam
pling strategies from the random search-based algo
rithms considered in this paper. Interested readers may 
refer to Picheny et al. (2013) for more information on 
sampling criteria of the kriging-based Bayesian optimi
zation algorithms.

In terms of the estimation of objective values, there 
are in general two different approaches: the multiobser
vation approach and the single-observation approach. 
The multiobservation approach estimates the objective 
value based on repeatedly sampling the same solution 
and builds the convergence based on the strong law of 
large numbers. For instance, the simple random search 
algorithms of Chia and Glynn (2013) and the grid 
search algorithms of Ensor and Glynn (1997) and Yako
witz et al. (2000) all use the multiobservation approach. 
The single-observation approach samples each solution 
only once but relies on the samples from other solutions 
to ensure the convergence to the true objective value. 
To the best of our knowledge, this approach dated 
back to Devroye (1978), who uses a k-nearest neighbor 
(KNN) scheme to estimate the objective value of any 
feasible solution. In recent years, the single-observation 
approach has become more popular because of its supe
rior empirical performance, and it is typically imple
mented through a shrinking-ball mechanism that is 
very similar to the KNN scheme (Baumert and Smith 
2002). For instance, the algorithms of Andradóttir and 
Prudius (2010) and Fan and Hu (2018) all use the 
shrinking-ball mechanism. Kiatsupaibul et al. (2018) 
propose a general framework of random search algo
rithms with the shrinking-ball mechanism and provide 
conditions under which the algorithms are convergent. 
Recently, Zhang and Hu (2022) integrate the shrinking- 
ball mechanism with the model-based annealing ran
dom search algorithm of Hu and Hu (2011), and they 
propose a new single-observation COvS algorithm 
with adaptive random search. In the algorithm, the 
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authors build surrogate models based on the shrinking- 
ball method for constructing sampling distributions 
and prove a finite-time probability bound on the 
algorithm’s performance under a Lipschitz continuity 
condition.

In this paper, we propose a class of Gaussian process- 
based random search (GPRS) algorithms, which provide a 
new framework to handle the triple “E” for random 
search COvS algorithms. Algorithms under the GPRS 
framework have two key components. One is that 
GPRS algorithms build a Gaussian process surrogate 
model to estimate the objective function value for 
every feasible solution in each iteration. The single- 
replication approach is adopted by GPRS algorithms, 
which require only one observation from each solution 
to construct the surrogate model. Another component 
is that GPRS algorithms sample solutions randomly 
according to a sampling distribution constructed in 
each iteration. A wide range of sampling distributions, 
including adaptive sampling distributions, are allowed 
in the GPRS framework as long as their sampling densi
ties are lower bounded. Therefore, the combination of 
these two components enables the design of new single- 
observation integrated COvS algorithms. However, this 
framework also brings a theoretical challenge in the 
convergence analysis because the Gaussian process sur
rogate model is quite different from the shrinking-ball 
mechanism and the random search strategy is also dif
ferent from the sampling criteria that are used in Bayes
ian optimization algorithms. In this paper, we establish 
the convergence results by exploring the properties of 
Gaussian process regression, and we prove that the 
surrogate model converges uniformly to the objective 
function if the sampling distributions are lower bounded.

Moreover, we also prove an upper bound of the rate 
of convergence of GPRS algorithms. Although there are 
many globally convergent random search algorithms 
for COvS problems, very few of them have rate of con
vergence results. Indeed, only exploration-based algo
rithms, such as the simple random search algorithm of 
Chia and Glynn (2013) and the grid search algorithms 
of Ensor and Glynn (1997) and Yakowitz et al. (2000), 
have known rate of convergence. This is because these 
algorithms have a very simple structure (e.g., determin
ing the set of candidate solutions at the beginning and 
allocating the same number of observations for all can
didate solutions) and are in general easy to analyze. 
When the sampling distributions are more complicated, 
rate of convergence results are in general very difficult 
to establish. In the random search algorithm of Zhang 
and Hu (2022), to establish the finite-time probability 
bound, the authors analyze the rate of convergence 
of the shrinking-ball method on a subset of sampled 
points under a Lipschitz continuity condition. How
ever, there is still a gap between the rate of convergence 
of point estimation and the rate of convergence of the 

shrinking-ball algorithm. In this paper, we prove that if 
the sample paths of the imposed Gaussian process are 
continuously differentiable, the rate of convergence of 
GPRS algorithms can be no slower than Õp(n�1=(d+2)), 
where d is the dimension of the decision variables and 
Õp(·) is a big O notation ignoring logarithmic factors. 
Recall that the upper bound of rate of convergence of 
the EGO algorithm for deterministic continuous black- 
box optimization problems is Op(n�1=d), when the func
tions are in the reproducing-kernel Hilbert space of 
the Gaussian process. Our proved bound is slightly 
slower possibly because of simulation noises. In the one- 
dimensional COvS problem, this upper bound may be 
considered to be tight because the optimal rate of conver
gence of nonparametric regression is Op(n�1=3) under 
similar smoothness conditions (Donoho 1994).

Lastly, we propose a specific GPRS algorithm as an 
example to describe how to design an integrated GPRS 
algorithm and how to implement the algorithm. This 
algorithm is an extension of the Gaussian process- 
based search (GPS) algorithm of Sun et al. (2014) from 
DOvS to COvS, and therefore, we call it the GPS-C algo
rithm. By using the Gaussian process surrogate model 
(i.e., the conditional mean and its uncertainty) both for 
estimating the objective function value and for con
structing adaptive sampling distributions, the GPS-C 
algorithm integrates exploration, exploitation, and esti
mation seamlessly. Numerical experiments show that 
the GPS-C algorithm performs well for solving COvS 
problems with both known and unknown variances of 
simulation noises.

To summarize, this paper contributes to existing liter
ature on COvS in a few aspects. First, it establishes the 
global convergence of GPRS algorithms without the 
explicit use of the shrinking-ball mechanism. Second, it 
establishes an upper bound of the rate of convergence 
for the whole class of GPRS algorithms that (1) use a 
Gaussian process surrogate model to estimate the 
objective function and (2) randomly sample solutions 
from a sequence of density functions bounded from 
below. Additionally, some intermediate results and 
techniques used in establishing the convergence and 
rate of convergence may be extendable to other applica
tions of Gaussian process regression.

There are also some drawbacks in the methods used 
in establishing the convergence and rate of convergence 
results of GPRS algorithms. The results depend criti
cally on two assumptions (i.e., the objective function is 
a sample path from a Gaussian process, and the simula
tion noises follow normal distributions with known 
variances). We admit these assumptions are restrictive. 
However, they are needed because we rely heavily on 
the properties of Gaussian process regression, which 
only work under these assumptions at this moment, 
and they are commonly used in Gaussian process- 
based optimization algorithms (e.g., the KGCP algorithm 
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of Scott et al. 2011). In the numerical study, we relax 
these assumptions and find that the GPS-C algorithm 
is robust and has good empirical performance even 
when the assumptions are not satisfied.

The rest of this paper is organized as follows. In Sec
tion 2, we describe the problem setting and introduce 
the GPRS framework. In Section 3, we analyze algo
rithms under the GPRS framework and show its global 
convergence. In Section 4, the rate of convergence is 
established for the Gaussian process having continu
ously differentiable sample paths. Section 5 uses the 
GPS-C algorithm as an example to describe the design 
and implementation of a GPRS algorithm. Illustrative 
numerical experiments are presented in Section 6. We 
conclude in Section 7 and include some technical proofs 
and numerical results in the e-companion.

2. Gaussian Process-Based Random 
Search Framework

We are interested in solving the COvS problems with 
the following form

max
x∈X

E[G(x;ω)], (1) 

where x is a vector of continuous decision variables and 
ω represents the randomness of simulation experi
ments, and the expectation is taken with respect to ω. 
Let g(x) � E[G(x;ω)], which is a continuous function on 
X . The functional form of g(x) is unknown to us and 
can only be evaluated via noisy simulation observation 
G(x;ω), which is denoted as G(x) in the sequel for short. 
We make the following assumption on the feasible 
region X .

Assumption 1. The feasible region X is a compact set in 
Rd that satisfies cl(int(X )) � X , where cl(A) and int(A)
denote the closure and interior of a set A, respectively.

The condition that cl(int(X)) � X in Assumption 1 is 
a condition on constraint qualifications. It implies that 
for any boundary point x ∈ X , there exists a sequence of 
interior points {xi} such that xi→ x. This is similar to 
Slater’s condition for convex constrained optimization 
problems (Boyd et al. 2004), which ensures strict feasibil
ity, although the feasible region X need not be convex. 
With Assumption 1, for any x ∈ X and any d-dimensional 
ball centered at x with positive radius, say S(x), the vol
ume of X ∩ S(x) is larger than zero. Based on that, we 
can ensure that X ∩ S(x) has positive probability to be 
sampled for any x ∈ X if the sampling distribution has 
positive density on X .

Let ε(x) � G(x)� g(x) be the simulation noise at each 
point x ∈ X . We impose Assumption 2 on ε(x).

Assumption 2. For all x ∈ X , ε(x) follows a normal dis
tribution with mean 0 and known variance λ2(x) (i.e., 

ε(x) ~ N (0,λ2(x))). The variance λ2(x) is positive and 
bounded on X (i.e., 0 < λ2(x) ≤ λ2

max for all x ∈ X ).

The simulation noise ε(x) is assumed to follow a nor
mal distribution with known variance λ2(x) in the theo
retical analysis because the convergence analysis of 
GPRS algorithms is based on the properties of the 
kriging surfaces. In the literature of kriging-based 
Bayesian optimization algorithms and Gaussian pro
cess regression, results are typically derived under the 
assumption of known (equal or unequal) variances 
(e.g., the stochastic kriging approach of Ankenman et al. 
2010 and the KGCP algorithm of Scott et al. 2011). In 
the practical COvS setting, variances are typically 
unknown but can be estimated. Different methods have 
been proposed to estimate the unknown variances in 
practice. For instance, under the homoscedastic context, 
Huang et al. (2006) use the maximum likelihood estima
tion (MLE) method to estimate the unknown variance 
with a single observation at each design point; under 
the heteroscedastic context, Ankenman et al. (2010) 
directly calculate the sample variance by taking multiple 
observations at each design point. To keep the single- 
observation feature of GPRS algorithms, a kernel-based 
method, which utilizes neighborhood information to esti
mate the variance of the simulation noise, is proposed in 
Section 5 of this paper. Additionally, it is reasonable to 
assume the boundedness of λ2(x) on compact X because 
it is commonly satisfied in practical applications.

2.1. Gaussian Process Regression
Algorithms under the GPRS framework use Gaussian 
process regression to build a surrogate model of the 
objective function g(x) in each iteration. It takes a Bayes
ian viewpoint and assumes that the unknown objective 
function g(x) is a (random) sample path of a Gaussian 
process fGP on X , with the mean function µ0 : X → R, 
defined by µ0(x) � E[fGP(x)], and the covariance function 
k0 : X × X → R, defined by k0(x, x′) � E[(fGP(x)�µ0(x))
(fGP(x′)�µ0(x′))]. In GPRS algorithms, we require the 
mean and covariance functions to satisfy the following 
assumption.

Assumption 3. The mean function µ0(x) is continuous on 
X , and the covariance function k0(x, x′) � τ2ρ(x� x′) for 
some τ > 0 and some continuous function ρ : Rd→ R, 
which further satisfies the following three conditions: 

i. ρ( |d | ) � ρ(d), where | · | means taking absolute 
value component wise;

ii. ρ(d) is decreasing in d component wise for d ≥ 0;
iii. ρ(0) � 1, ρ(d) → 0 as ‖d‖→∞, and for some 0 <

C <∞ and some ɛ,δ > 0, 1� ρ(d) ≤ C | log(‖d‖) |�1�ɛ for 
all ‖d‖ < δ, where ‖ · ‖ denotes the Euclidean norm.

Assumption 3 is in general a weak assumption, and 
most covariance functions used in practice satisfy 
it. Notable examples include the power exponential 

Wang et al.: Gaussian Process-Based Random Search 
388 Operations Research, 2025, vol. 73, no. 1, pp. 385–407, © 2023 INFORMS 



covariance function k0(x, x′) � τ2exp{�
Pd

j�1θj |xj� xj
′ |
η
}

with θj > 0 and 0 < η ≤ 2 and the Matérn covariance 
function; see Rasmussen and Williams (2006, chapter 4) 
for more types of covariance functions. The mean and 
covariance functions reflect one’s prior belief about the 
unknown function g(x) and are subject to user’s choice. 
When no structural information for g(x) is available, it 
is a convention to set µ0 ≡ 0. Shen et al. (2018) demon
strate that it is beneficial to embed some stylized mod
els into µ0 if they are capable of capturing the structure 
information of g(x). Furthermore, Assumption 3 also 
implies that the correlation function (1=τ2)k0 is station
ary (i.e., it depends on x and x′ only through the differ
ence x� x′), and the sample paths of fGP are continuous 
with probability 1 (Adler and Taylor 2007, theorem 
1.4.1).

Suppose that GPRS algorithms have simulated a set 
of solutions denoted by Xn � {xi}

n
i�1 with the corre

sponding simulation observations Gn � (G(x1), : : : , G(xn))
⊤

∈ Rn. Then, conditioned on these observations, the con
ditional Gaussian process is still a Gaussian process 
whose mean and covariance functions are given by 
µn(x) � E[fGP(x) |{Xn, Gn}] and kn(x, x′) � E[(fGP(x)�µn 
(x))(fGP(x′)� µn(x′)) |{X

n, Gn}], respectively. By Assump
tion 3, they can be expressed as

µn(x)�µ0(x)+k0(x,Xn)[k0(Xn,Xn)+Rn]�1
[Gn�µ0(X

n)],
(2) 

kn(x,x′)�k0(x,x′)�k0(x,Xn)[k0(Xn,Xn)+Rn]�1k0(Xn,x′),
(3) 

where Rn is an n-dimensional diagonal matrix with 
simulation noise variance λ2(xi) being its diagonal ele
ments, k0(Xn, Xn) � [k0(xi � xj)]1≤i, j≤n ∈ Rn×n, k0(x, Xn)

� (k0(x� x1), : : : , k0(x� xn)) ∈ R1×n, and k0(Xn, x′) � (k0 
(x1� x′), : : : , k0(xn� x′))⊤ ∈ Rn.

Similar to many other kriging-based Bayesian opti
mization algorithms (e.g., the KGCP algorithm of Scott 
et al. 2011), µn(x) is viewed as our prediction of g(x)
given the observations {Xn, Gn}. It serves as the basis 
for exploitative search. In addition, the Gaussian pro
cess regression also provides information on the uncer
tainty of the prediction measured by the variance of the 
conditional Gaussian process (i.e., kn(x, x) for x ∈ X ). As 
noted by Sun et al. (2014), it can serve as the basis for 
explorative search. In this section, we focus on the 
framework of GPRS algorithms. The discussion on how 
to use kn(x, x) to guide searches will be provided in Sec
tion 5.

2.2. Gaussian Process-Based Random 
Search Algorithms

We propose a framework for GPRS algorithms for solv
ing Problem (1). Let s denote the iteration counter, r 
denote the number of solutions sampled in each itera
tion, and n denote the counter of the sampled solutions. 

Define Xn and Gn as the set of solutions and the vector 
of observations, respectively. Let fn(x) be the sampling 
density function constructed based on {Xn, Gn}. In the 
course of GPRS algorithms, the unknown objective 
function g(x) is estimated using the conditional mean 
function µn(x), as defined in Equation (2). Design points 
are sequentially sampled according to the sampling 
density function fn(x). To ensure the global conver
gence, the sampling density function fn(x) needs to sat
isfy the following assumption.

Assumption 4. There exists a positive constant α > 0 such 
that fn(x) ≥ α for all n and x ∈ X .

Assumption 4 essentially ensures that any d-dimen
sional ball centered at x ∈ X with positive radius can be 
sampled with a positive probability. This assumption is 
commonly used in random search-based algorithms for 
both DOvS and COvS problems (Andradóttir and Pru
dius 2009, 2010; Sun et al. 2014; Kiatsupaibul et al. 
2018).

Given the variance of simulation noise λ2(x), the 
framework of GPRS algorithms can be presented as 
follows. 

Step 0 (initialization). Impose a Gaussian process 
with µ0 and k0 that satisfy Assumption 3. Specify a r >
0. Set s � 0, n � 0, X0 � ∅, and G0 � ∅. Furthermore, set 
f0(x) as a user-specified sampling distribution over X .

Step 1 (sampling). Set s � s+ 1. Sample xr(s�1)+1, : : : , 
xrs independently from fn(x), and obtain corresponding 
simulation observations G(xr(s�1)+1), : : : , G(xrs) indepen
dently from all previous observations.

Step 2 (calculation). Set n� rs. Let Xn � Xr(s�1) ∪
{xr(s�1)+1, : : : , xrs} and Gn � ([Gr(s�1)]⊤, G(xr(s�1)+1), : : : , 
G(xrs))

⊤. Calculate µn(x) according to Equation (2). Let 
x∗n � arg maxx∈Xµn(x), and break the tie arbitrarily if it 
exists. Then, construct the sampling distribution fn(x)
according to user-specified rules.

Step 3 (stopping). If the stopping condition is not 
met, go to step 1; otherwise, stop and output x∗n and 
µn(x

∗
n) as the estimated optimal solution and the esti

mated optimal objective value.
We summarize some features of GPRS algorithms for 

COvS problems. First, algorithms under the GPRS 
framework are single-observation random search algo
rithms for COvS problems. Compared with those ran
dom search algorithms with multiple observations, 
requiring only a single observation at each solution 
allows the algorithm to better explore the feasible 
region given the same simulation budget, which is an 
appealing property for COvS problems. Second, GPRS 
algorithms allow a wide range of sampling distribu
tions, as Assumption 4 can easily be satisfied. One sim
ple way is to sample each solution from an exploitative 
sampling distribution with probability p and from 
another uniform sampling distribution with probability 
1� p. Many existing algorithms (e.g., the shrinking-ball 
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algorithm of Kiatsupaibul et al. 2018) adopt this way. 
One can also consider constructing some adaptive sam
pling distributions (e.g., by utilizing the uncertainty 
estimation of the Gaussian process regression). Third, 
rather than averaging observations in a shrinking ball 
centered at a solution, which is commonly used in 
single-observation random search algorithms to esti
mate the objective function (Kiatsupaibul et al. 2018), 
GPRS algorithms use the conditional mean function of 
the Gaussian process. As a result, the analysis of the 
asymptotic behavior of GPRS algorithms is different 
from those of shrinking-ball algorithms, and it relies on 
the property of the Gaussian process regression.

We note that GPRS algorithms provided in this sec
tion are a theoretical framework and cannot be imple
mented without specifying several key components 
(e.g., the sampling distribution, the sampling scheme, 
and the variance estimation method). Before discussing 
the implementation of GPRS algorithms in Section 5, 
we first analyze the global convergence and the rate of 
convergence in next two sections, which are applicable 
to any algorithm within this framework.

3. Global Convergence
Let g∗ �maxx∈X g(x) be the optimal objective function 
value, and let X ∗ � arg maxx∈X g(x) be the set of optimal 
solutions. In this section, we establish the almost-sure 
global convergence of GPRS algorithms (i.e., we prove

P lim
n→∞

µn(x
∗
n) � g∗

n o
� 1 and

P lim
n→∞

d(x∗n,X ∗) � 0
n o

� 1, (4) 

where for any set A ⊂ Rd and a point x ∈ Rd, we define 
the distance from x to A by d(x,A) � infx′∈A‖x� x′‖). 
Notice that Equation (4) implies that the estimated opti
mal value converges to the true optimal value with 
probability 1 and the estimated optimal solution con
verges to the set of true optimal solutions with proba
bility 1.

Even though the probability statements in Equation 
(4) are common goals for convergence analysis for 
COvS algorithms, there is a subtle difference between 
ours and the ones in the literature in terms of the ran
domness considered in these statements. For most algo
rithms in the literature (see, for instance, the ASR 
algorithm of Andradóttir and Prudius 2010 and the 
shrinking-ball algorithm of Kiatsupaibul et al. 2018), 
the objective function g(x) is considered deterministic 
(but unknown), and the randomness comes from the 
sampling and the simulation experiments. In our case, 
however, the objective function g(x) is assumed to be a 
(random) sample path from the Gaussian process fGP . 
Therefore, the randomness not only comes from the 
sampling and the simulation experiments but also from 
the Gaussian process. This treatment of the objective 

function is consistent with the Bayesian viewpoint of 
the Gaussian process regression, and it has also been 
used to analyze the convergence of the sequential opti
mization algorithm based on the KGCP policy (Scott 
et al. 2011).

The convergence analysis of GPRS algorithms contains 
two major steps. In the first step, we establish the conver
gence of the conditional variance function kn(x, x). Based 
on that, in the second step, we prove the uniform conver
gence of the conditional mean function µn(x). Then, the 
almost-sure convergence of GPRS algorithms can be 
derived.

3.1. The Convergence of the Conditional 
Variance

In this subsection, our goal is to show that the condi
tional variance kn(x, x) converges to zero as n→∞ for 
any x ∈ X . For any x ∈ X , let S(x,ɛ) denote the closed d- 
dimensional ball centered at x with radius ɛ > 0, and let 
sn(x,ɛ) denote the number of solutions in S(x,ɛ) among 
all n sampled solutions. We first establish the following 
lemma regarding to the asymptotic behavior of sn(x,ɛ), 
whose proof is an application of the Law of Large Num
bers and hence, is omitted.

Lemma 1. Suppose that Assumption 1 holds and that dis
tributions with density functions ψi satisfying ψi ≥ α > 0 
on X are used to generate points xi ∈ Xn, for i � 1, : : : , n. 
Then, for any fixed ɛ > 0 and any x ∈ X , sn(x,ɛ) →∞
almost surely as n→∞.

Lemma 1 shows that for any small ball centered at 
x ∈ X with radius ɛ, the number of sampled solutions in 
that ball goes to infinity as n→∞. This implies that the 
sampled solution will eventually be dense on X , and it 
provides a preliminary result for our convergence 
analysis.

Another preliminary result is that the conditional 
variance is upper bounded, which is a direct result of 
lemma 4 of Ding et al. (2022), and it is provided in 
Lemma 2.

Lemma 2 (Ding et al. 2022, lemma 4). Fix a compact set 
A ⊂ X . Suppose x1, : : : , xn ∈A. If Assumptions 2 and 3
hold, then for any x ∈A,

kn(x, x) ≤ τ2�
n minx′∈A [k0(x, x′)]2

nτ2 +λ2
max

, 

where kn(·, ·) is defined in Equation (3).

Based on Lemmas 1 and 2, we have the following 
lemma on the convergence of the conditional variance 
function. This is an important result, and its proof is 
provided in Section EC.1.1 of the e-companion.

Lemma 3. Suppose that Assumptions 1–3 hold and that 
distributions with density functions ψi satisfying ψi ≥ α >

Wang et al.: Gaussian Process-Based Random Search 
390 Operations Research, 2025, vol. 73, no. 1, pp. 385–407, © 2023 INFORMS 



0 on X are used to generate points xi ∈ Xn, for i � 1, : : : , n. 
Then, for any x ∈ X , kn(x, x) → 0 almost surely as n→∞.

Lemma 3 provides the almost-sure pointwise conver
gence of the conditional variance kn(x, x) to zero as 
n→∞. By Chebyshev’s inequality, Lemma 3 further 
implies that the conditional mean function µn(x) con
verges in probability for any x ∈ X . However, this 
pointwise convergence is not enough. In the following 
subsection, we show that the conditional mean function 
converges uniformly.

3.2. The Global Convergence of 
GPRS Algorithms

Notice that Lemma 3 only implies the pointwise con
vergence of µn(x) to E[µn(x)]. However, this is not 
enough. In this subsection, our goal is to show that the 
conditional mean function µn(x) converges to g(x) uni
formly as n→∞, based on which the global conver
gence of the algorithm can be easily derived. The 
following lemma of Bect et al. (2019) is critical to fill the 
gap. It shows that µn(x) converges uniformly to a limit
ing function.

Lemma 4 (Bect et al. 2019, proposition 2.9). Suppose that 
Assumptions 1–3 hold. Then, µn(x) converges uniformly 
on X to a function, denoted by µ

∞
(x), almost surely as 

n→∞.

Notice that Lemma 4 only ensures that µn(·) con
verges uniformly to a certain function, which is not nec
essarily g(x). By combining Lemmas 3 and 4, we have 
the following proposition, which shows that the limit is 
indeed g(x).

Proposition 1. Suppose that Assumptions 1–3 hold and 
that distributions with density functions ψi satisfying ψi ≥

α > 0 on X are used to generate points xi ∈ Xn, for 
i � 1, : : : , n. Then, µn(x) → g(x) uniformly on X almost 
surely as n→∞.

Proof. Fix any x ∈ X . First notice that

E[kn(x, x)] � E[E[(g(x)�µn(x))
2
| {Xn, Gn}]]

� E[(g(x)�µn(x))
2
]: (5) 

By Lemma 3, kn(x, x) → 0 almost surely as n→∞. 
Then, together with the fact that 0 ≤ kn(x, x) ≤ k0(x, x) �
τ2 from Equation (EC.1) in the proof of Lemma 3 in 
the e-companion, we can conclude that E[kn(x, x)] →
E[0] � 0 by the dominated convergence theorem (Dur
rett 2010, theorem 1.5.6). It implies that E[(g(x)�µn 
(x))2] → 0 (i.e., µn(x) → g(x) in L2) for any x ∈ X . 
Lemma 4 implies that µn(x) → µ

∞
(x) almost surely on 

X . Because of the almost-sure uniqueness of conver
gence in probability (Gut 2013, theorem 2.1 in chapter 
5), it can be obtained that P{µ∞(x) � g(x)} � 1, for any 
x ∈ X .

Consider a dense but countable subset X of X (e.g., 
the set of all x ∈ X such that all elements of x are ratio
nal numbers). Then, we have P{µ∞(x) � g(x), for all 
x ∈X } � 1, because the probability measure is a non
negative countably additive set function (Durrett 2010, 
p. 1). We now focus on one generic sample path such 
that µ∞(x) � g(x) for all x ∈X and µn(x) → µ∞(x) uni
formly on X (by Lemma 4). Recall that µn(x) is continu
ous on X for each n; then, µ∞(x) is also continuous on 
X , as the uniform convergence maintains continuity 
(Tao 2009, corollary 14.3.2). Additionally, g(x) is contin
uous on X . For any x ∈ X , because X is a dense subset, 
we can find a sequence xi ∈X , i � 1, 2, : : : , such that 
xi→ x as i→∞. Hence, µ

∞
(xi) → µ

∞
(x) and g(xi) →

g(x), as i→∞. Because µ∞(xi) � g(xi), for i � 1, 2, : : : , it 
can be concluded that µ

∞
(x) � g(x) because of the 

uniqueness of limit (Tao 2009, proposition 6.1.7). There
fore, we conclude that P{µ

∞
(x) � g(x), for all x ∈ X}

� 1. The proof is then completed by combining this 
result with Lemma 4. w

Proposition 1 shows that µn(x) defined in Equation 
(2) converges uniformly to g(x) almost surely as the 
number of observations goes to infinity. It plays a cru
cial role in establishing the convergence of GPRS algo
rithms. With the result of Proposition 1, by theorem 5.3 
of Shapiro et al. (2009), it is straightforward to establish 
the global convergence of GPRS algorithms, which is 
formally stated in Theorem 1.

Theorem 1. If Assumptions 1–4 hold and a GPRS algo
rithm is used to solve Problem (1), then µn(x∗n) → g∗ and 
d(x∗n,X ∗) → 0 almost surely as n→∞.

Theorem 1 shows that algorithms under the GPRS 
framework are globally convergent when solving COvS 
problems. It is a desirable property for random search 
algorithms. As discussed at the beginning of this section, 
the convergence result in Theorem 1 is different from 
(and weaker than) the typical ones in the literature, 
which treat the objective function as a deterministic 
function. To compare with the ones in the literature, we 
may interpret our result as follows. GPRS algorithms 
have the global convergence (in the typical sense) for 
almost all objective functions that are sampled randomly 
from the Gaussian process that satisfies Assumption 3. 
In other words, for those objective functions for which 
GPRS algorithms fail to converge, their combined proba
bility under the Gaussian process assumption is zero.

4. Rate of Convergence
Although almost all random search COvS algorithms 
in the literature have some sort of convergence guaran
tees, very few of them have results on the rate of con
vergence, which provides valuable information on the 
efficiency and scalability of the algorithm. An impor
tant reason for the lack of rate of convergence results is 
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the difficulty in analyzing them. In this section, we 
show that by leveraging on the properties of Gaussian 
process regression, we are able to establish the rate of 
convergence of GPRS algorithms, and the rate of con
vergence does provide valuable insights on the perfor
mance of the algorithm.

Let {ɛn}n≥1 be a deterministic sequence such that ɛn >

0 and ɛn→ 0 as n→∞. In this section, we want to find 
{ɛn}n≥1 so that we can show that the rate of convergence 
of GPRS algorithms is Op(ɛn) (i.e., for every δ > 0, there 
exist constants Cδ ∈ (0,∞) and Nδ ∈ N such that

P{ |µn(x
∗
n)� g∗ | > Cδɛn} < δ, (6) 

for all n >Nδ). Similar to that in Equation (4), the proba
bility in Equation (6) also includes the randomness in 
the Gaussian process as well as the randomness in the 
sampling and the simulation experiments.

To simplify the presentation, we also adopt the Õp 
notation. For any constant k, if the rate of convergence 
of an algorithm is Op(ɛn logk

ɛn), it is denoted as Õp(ɛn). 
The Õp notation is a variant of the Op notation, which 
ignores the logarithmic factors in the rate and captures 
the main effect. Its deterministic version is popular in 
the area of theoretical computer science.

The rate of convergence analysis of the algorithm also 
has two steps. In the first step, we establish the rate of 
convergence of the conditional variance function kn(x, x)
to zero. Based on that, in the second step, we prove the 
rate of convergence of the maximum value of conditional 
mean function µn(x∗n) to the global optimal value g∗. In 
the following subsections, we elaborate these two steps.

4.1. The Rate of Convergence of the 
Conditional Variance

Before we establish the rate of convergence of the con
ditional variance kn(x, x), we first make two stronger 
assumptions on the Gaussian process and the feasible 
region, which are needed to establish the rate of conver
gence of GPRS algorithms. The first one is on the Gauss
ian process.

Assumption 5. The first-order derivative surfaces of the 
Gaussian process fGP are stationary Gaussian processes and 
have continuous sample paths almost surely on X .

Compared with Assumption 3, Assumption 5 imposes 
stronger regularity conditions on the sample paths of the 
Gaussian process fGP . The sample paths g(x) are not only 
continuous but also continuously differentiable. This 
requires that the mean function µ0(x) is continuously dif
ferentiable. The correlation function (1=τ2)k0(x, x′) needs 
to have continuous second-order derivatives with finite 
value at the point (x, x), and the correlation functions 
of the derivatives surfaces should satisfy Assumption 
3(iii) (Abrahamsen 1997). Many commonly used correla
tion functions (e.g., the Gaussian correlation function, 
the Matérn correlation function with the smoothness 

parameter v (v > 1) being a half-integer, and the rational 
quadratic correlation function) satisfy these properties (see 
the analysis provided in Section EC.3 of the e-companion).

Because differentiation is a linear operator, the first- 
order derivative surfaces of Gaussian process are still 
Gaussian processes (Azaïs and Wschebor 2009, p. 29). 
Assumption 5 indicates that these derivative surfaces 
are bounded almost surely on X (Adler and Taylor 
2007, theorem 1.5.4). As we will see later, these bound
edness properties are critical in the analysis of the rate 
of convergence of GPRS algorithms.

Besides the stronger assumption on the Gaussian 
process, we also need a stronger assumption on the fea
sible region, which is stated as follows.

Assumption 6. The feasible region X ⊂ Rd is a bounded 
convex set with nonempty interior.

Compared with Assumption 1, Assumption 6 is stron
ger by requiring the convexity of the feasible region X . 
With this assumption, we can establish a lower bound for 
the volume of the intersection of X and a small ball 
S(x,ɛ), which is proved by Baumert and Smith (2002, p. 
14) and formally stated in Lemma 5.

Lemma 5 (Baumert and Smith 2002, p. 14). If Assump
tion 6 holds, then for any x ∈ X and sufficiently small 
ɛ > 0, there exists some constant C > 0, which may depend 
on X , such that

ν(S(x,ɛ) ∩ X ) ≥ C · ν(S(x,ɛ)), (7) 

where ν(·) denotes the d-dimensional volume.

For the interior points of X , Equation (7) always 
holds even without Assumption 6 when ɛ is small 
enough. However, for x on the boundary of X , it is not 
necessarily the case. Lemma 5 helps to rule out those 
situations. It ensures that for any x ∈ X , the sampling 
probability of S(x,ɛ) ∩ X has a lower bound that is pro
portional to the volume of the ball S(x,ɛ). This result is 
a foundation for the convergence analysis of the 
shrinking-ball algorithms. Inspired by the shrinking- 
ball idea, in the following analysis, we also construct 
balls that shrink with the number of sampled points, 
through which we can investigate the increasing rate of 
the sampled design points in local areas.

Recall that sn(x,ɛ) denotes the number of points sam
pled in the closed d-dimensional ball S(x,ɛ) with a 
deterministic radius ɛ. We further let sn(x, rn) denote 
the number of points sampled in another closed d- 
dimensional ball S(x, rn), centered at x with radius rn. 
We have the following lemma, whose proof is provided 
in Section EC.2.1 of the e-companion.

Lemma 6. Suppose that Assumption 6 holds and that dis
tributions with density functions ψi satisfying ψi ≥ α > 0 
on X are used to generate points xi ∈ Xn, for i � 1, : : : , n. 
Let ε(n) � (log log n)=log n, γn � γ� aε(n), pn � γ� bε(n), 
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and rn � r0n�
1�γn

d with r0 > 0. Then, for any γ ∈ (0, 1) and 
b� 1 > a, sn(x, rn) is Ω(npn )1 almost surely (i.e., P{sn(x, 
rn) is Ω(npn )} � 1) for any x ∈ X .

The result of Lemma 6 is stronger than that of Lemma 
1. In particular, Lemma 1 shows that sn(x,ɛ) increases to 
∞, whereas Lemma 6 shows the increasing rate of 
sn(x, rn) to ∞. Similar results have also been developed 
by shrinking-ball algorithms (see, for instance, Baumert 
and Smith 2002, Andradóttir and Prudius 2010). Based 
on the work of Andradóttir and Prudius (2010), we 
prove a slightly sharper result by including the loga
rithm factors in the increasing rate of sn(x, rn). This is 
used to derive the rate of convergence of GPRS algo
rithms in the following analysis.

Lemma 6 indicates that the increasing rate of sn(x, rn)

is close to Ω(nγ), which relies on the contracting rate of 
the radius. Similar to the proof of Lemma 3, by combin
ing the increasing rate of sn(x, rn) and the upper bound 
of kn(x, x) (Lemma 2), we can then establish the rate of 
convergence of the conditional variance kn(x, x). This 
result is formally stated in Lemma 7, and its proof is 
provided in Section EC.1.2 of the e-companion.

Lemma 7. Suppose that Assumptions 2 and 6 hold and 
that distributions with density functions ψi satisfying ψi ≥

α > 0 on X are used to generate points xi ∈ Xn, for i � 1, 
: : : , n. If the correlation function satisfies ρ(x, x′) ≥ 1�Cr 
‖x� x′‖η for x′ ∈ S(x, rn) with constants Cr > 0 and 0 <
η ≤ 2, then kn(x, x) is O(n�κ(n)) almost surely for any x ∈
X (i.e., P{kn(x, x) is O(n�κ(n))} � 1, where

κ(n) � η

d+ η� bε(n) and ε(n) � log log n
log n , (8) 

for any b > η=(d+ η)).

Lemma 7 is the main result of this subsection. It states 
that the rate of convergence of the conditional variance 
kn(x, x) is Õ(n�η=(d+η)) if the correlation function satisfies 
ρ(x, x′) ≥ 1�Cr‖x� x′‖η for any x′ ∈ S(x, rn). We note 
that this inequality is met by many correlation functions 
(e.g., the power exponential correlation function, the 
rational quadratic correlation function, and the Matérn 
correlation function with smoothness parameter v 
being half-integer). According to the analyses of corre
lation functions in Section EC.3 of the e-companion, the 
Gaussian correlation function (a special case of the 
power exponential correlation function), the rational 
quadratic correlation function, and the Matérn correla
tion function (with v being half-integers and greater 
than one) all satisfy Assumption 5 and the inequality 
with η � 2. Hence, the rate of convergence of kn(x, x) is 
Õ(n�2=(d+2)) if Gaussian processes with these correlation 
functions are used.

Roughly speaking, the rate of convergence of kn(x, x)
is achieved by an adequate choice of the radius rn. By 
Lemma 2, to make kn(x, x) converge to zero, we need to 

let radii of the shrinking balls converge to zero while 
keeping the number of sampled points in these shrink
ing balls still going to infinity. Because the trends of the 
contracting rate of the radius and the increasing rate of 
the number of sampled points within shrinking balls 
are opposite, to obtain a good rate of convergence of 
kn(x, x), it requires an adequate balance of these two 
rates. Under the condition of the unconditional covari
ance function k0(x, x′), by letting the radius rn contract 
at the rate Õ(n�1=(d+η)), the proved rate of convergence 
of kn(x, x) can be obtained, which is the optimal rate 
under the bound of Lemma 2. Notice that the dimen
sion d is included because the expected number of sam
pled points in the shrinking balls is proportional to the 
volumes of the shrinking balls, which are proportional 
to rd

n.

4.2. The Rate of Convergence of the Maximum 
Value of the Conditional Mean Function

In this subsection, our goal is to establish the rate of con
vergence of the maximum value of the conditional 
mean function µn(x

∗
n) to the global optimal value g∗ (i.e., 

the rate of convergence of GPRS algorithms). To estab
lish the rate, two preliminary results are needed. The 
first is stated in Lemma 8, which establishes an upper 
bound for the probability that the estimation error of 
µn(x) is beyond a certain threshold. This result is 
obtained by applying the Chernoff bound on the condi
tional mean function µn(x), and its proof is provided in 
Section EC.1.3 of the e-companion.

Lemma 8. For any n � 1, 2, : : : and any x ∈ X , we have

P{ |µn(x)� g(x) | > ɛn} ≤ 2E[e�ɛ2
n=(2kn(x, x))], 

for any deterministic sequence (ɛn)n≥1 such that ɛn > 0 and 
ɛn→ 0 as n→∞.

Lemma 8 indicates that the probability that the esti
mation error of µn(x) is greater than ɛn is bounded by 
how fast the conditional variance function kn(x, x) con
verges to zero. If it converges at a faster rate than ɛ2

n for 
any x ∈ X , then the probability converges to zero for 
any feasible point.

The following lemma provides another preliminary 
result, which establishes an upper bound for the proba
bility that no point is ever sampled near the global 
optima. Such a bound is critical to establishing the rate 
of convergence of GPRS algorithms. The proof of 
Lemma 9 is nontrivial, and it utilizes the properties of 
the derivative surfaces of the Gaussian process and the 
Borell-TIS inequality to construct a valid bound.

Lemma 9. Suppose that Assumptions 5 and 6 hold and 
that distributions with density functions ψi satisfying ψi ≥

α > 0 on X are used to generate points xi ∈ Xn, for i � 1, 
: : : , n. Then, for sufficiently large n, there exist some positive 
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constants Cj, aj, and σ2
j , for j � 1: : : , d, such that

P(∩n
i�1 {g

∗� g(xi) > ɛn})

≤ e�
αCπd=2ɛdnn
Γ(d=2+1)log n + 2

Xd

j�1
e

Cj

�
(log n)1=d
ffiffi
d
√ �aj

�
�

�
(log n)1=d
ffiffi
d
√ �aj

�2

2σ2j , 

where C is as defined in Equation (7) and Γ(·) is the gamma 
function.

Proof. Because the proof is long, we only provide a 
sketch here, and we provide the detailed proof in Sec
tion EC.1.4 of the e-companion. The proof contains 
three major steps. 

1. The first step is to bound the probability P(∩n
i�1 

{g∗ � g(xi) > ɛn}) with the probabilities of another two 
disjoint events.

Suppose x∗ is a solution in X ∗; by applying the mean 
value theorem and the Cauchy–Schwarz inequality, we 
can bound the gap g∗� g(xi) with the product of the 
distance ‖x∗ � xi‖ and the norm of the gradient ∇g(j), 
where j is a point in X . Because the derivative surfaces 
ḟ GP(x)j are almost surely bounded on X for all j � 1, 2, 
: : : , d, let ġ(x)j be the (random) sample path of ḟ GP(x)j 
and ġ∗ �maxj�1, : : : , d{supx∈X | ġ(x)j | }, and we can further 
bound ‖∇g(j)‖ with 

ffiffiffi
d
√

ġ∗, and hence, P(∩n
i�1 {g∗� g(xi)

> ɛn}) ≤ P(∩n
i�1 {

ffiffiffi
d
√

ġ∗‖x∗� xi‖ > ɛn}). For large-enough 
n, by dividing 

ffiffiffi
d
√

ġ∗ at (log n)1=d, we can bound the 
aforementioned probability with the summation of an
other two probabilities P(∩n

i�1 {‖x∗� xi‖ > (ɛn=(log n)1=d
)})

and P(
ffiffiffi
d
√

ġ∗ ≥ (log n)1=d
). The first probability corre

sponds to the probability that no point is ever sampled 
within a ball centered at one global optimal solution 
given a small-enough radius. The second probability is 
the tail probability of the supremum of all d derivative 
surfaces of the Gaussian process.

2. The second step is to bound the first probability 
by utilizing the fact that the sampling distributions are 
bounded below by a positive constant α. Specifically, this 
is achieved by constructing a sequence of Bernoulli 
random variables (Bi)i≥1 with parameter αC · ν(S(x, (ɛn=

(log n)1=d
)) and calculating the probability P

Pn
i�1 Bi > 0

� �
.

3. The third step is to bound the second probability by 
utilizing the fact that the derivative surfaces are almost 
surely bounded and then applying the Borell-TIS in
equality. The Borell-TIS inequality is frequently used in 
probability theory, so we think it is ok to use this name 
directly. To clarify the source of the abbreviation “TIS”, 
we can add a reference (Adler and Taylor 2007, chapter 2)

By combining the bounds in the second and third 
steps, the proof is completed. w

In the proof of Lemma 9, we devise a novel approach 
to using the properties of the Gaussian process and its 
derivative surfaces. It is one of the major technical con
tributions of this paper, and it may be used in other 
applications of Gaussian process regression as well.

Now, with Lemmas 7–9, we are ready to establish the 
rate of convergence of GPRS algorithms. It is formally 
stated in Theorem 2.

Theorem 2. Suppose that Assumptions 2 and 4–6 hold 
and that the correlation function of the imposed Gaussian 
process satisfies ρ(x, x′) ≥ 1�Cr‖x� x′‖η for x′ ∈ S(x, rn)

with constants Cr > 0 and 0 < η ≤ 2. If a GPRS algorithm 
is used to solve Problem (1), then there exists a constant 
C0 > 0 such that

P |µn(x
∗
n)� g∗ | > 16C0 log n

nκ(n)

� �1=2
( )

→ 0 (9) 

as n→∞, where κ(n) is defined in Equation (8).

Proof. For any n ≥ 1, define
A0 � {|µn(x∗n)� g∗ | > ɛn},
A1 � {|µn(x

∗
n)� g(x∗n) | > ɛn=2},

A2 � {|µn(xi)� g(xi) | > ɛn=2 for some xi ∈ {x1, : : : , xn}},
A3 � {g∗ � g(xi) > ɛn=2 for all xi ∈ {x1, : : : , xn}}:

First, it is easy to see that if A0 happens, then A1 ∪
A2 ∪ A3 must happen. Suppose none of A1 A2, A3 hap
pen, and then, Ac

1 ∩ Ac
2 ∩ Ac

3 happens. Because both A0 
and Ac

1 happen, we must have g∗�µn(x
∗
n) > ɛn; other

wise, we conclude that g∗� g(x∗n) <�ɛn=2, which con
tradicts the definition of g∗. Notice that Ac

2 implies that 
|µn(xi)� g(xi) | ≤ ɛn=2 for all xi, i � 1, : : : , n, and Ac

3 
implies that g∗� g(xi) ≤ ɛn=2 for some xi, say x1. They 
together imply that |g∗�µn(x1) | ≤ ɛn. Recall that g∗�
µn(x

∗
n) > ɛn, so we have µn(x1)�µn(x

∗
n) > 0, but it con

tradicts to the definition of x∗n.
Based on the observations, we then have

P{ |µn(x
∗
n)� g∗ | > ɛn}

≤ P{A1 ∪ A2 ∪ A3} ≤ P{A1} + P{A2} + P{A3}

� P{ |µn(x
∗
n)� g(x∗n) | > ɛn=2}

+ P(∪n
i�1 { |µn(xi)� g(xi) | > ɛn=2})

+ P(∩n
i�1 {g

∗ � g(xi) > ɛn=2})
≤ P{ |µn(x

∗
n)� g(x∗n) | > ɛn=2}

+
Xn

i�1
P{ |µn(xi)� g(xi) | > ɛn=2}

+ P(∩n
i�1 {g

∗ � g(xi) > ɛn=2}): (10) 

For any x ∈ X , by Lemma 7, with probability 1, kn(x, x)
≤ C0n�κ(n) for some C0 > 0. Then, by Lemma 8,

P |µn(x)� g(x) | > ɛn=2
� �

≤ 2E[e�ɛ2
n=(8kn(x, x))]

≤ 2e�
1

8C0
ɛ2

nnκ(n)
: (11) 

Combining Equations (10) and (11) and Lemma 9
yields

P{ |µn(x
∗
n)� g∗ | > ɛn}
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≤ 2(n + 1)e�
1

8C0
ɛ2

nnκ(n)
+ e�

αCπd=2(ɛn=2)dn
Γ(d=2+1)log n

+ 2
Xd

j�1
e

Cj

�
(log n)1=d
ffiffi
d
√ �aj

�
�

�
(log n)1=d
ffiffi
d
√ �aj

�2

2σ2j : (12) 

Now, let ɛn �
16C0 log n

nκ(n)

� �1=2
. Notice that

2(n+ 1)e�
1

8C0
ɛ2

nnκ(n)
�

2(n+ 1)
n2 → 0 as n→∞

and

e�
αCπd=2(ɛn=2)dn
Γ(d=2+1)log n � e�

αC(4C0π)
d=2 (log n)d=2

Γ(d=2+1)log n ·n1�dκ(n)=2
→ 0 as n→∞

because 1� dκ(n)=2 > 0 by the definition of κ(n) with 
0 < η ≤ 2 in Equation (8). Moreover, it is easy to see that

e
Cj

�
(log n)1=d
ffiffi
d
√ �aj

�
�

�
(log n)1=d
ffiffi
d
√ �aj

�2

2σ2j → 0 as n→∞:

Therefore, it follows that, as n→∞,

P |µn(x
∗
n)� g∗ |> 16C0 log n

nκ(n)

� �1=2
( )

→ 0:

This concludes the proof of the theorem. w

Theorem 2 shows that the optimal value of the condi
tional mean function µn(x∗n) converges to the global 
optimal value g∗ no slower than Op(n�κ(n)=2) when the 
Gaussian process satisfies Assumption 5 and its correla
tion function satisfies ρ(x, x′) ≥ 1�Cr‖x� x′‖η for x′ ∈
S(x, rn) with constants Cr > 0 and 0 < η ≤ 2. As dis
cussed in Section 4.1, many commonly used Gaussian 
processes (e.g., the Gaussian processes having Gaussian 
correlation function, rational quadratic correlation 
function, and Matérn correlation function with the 
smoothness parameter v being a half-integer and 
greater than one) satisfy these conditions with η�2. 
Hence, the upper bound of the rate of convergence of 
GPRS algorithms can be Õp(n�1=(d+2)). This rate is the 
maximum allowable decreasing rate of ɛn such that 
both the probability that the prediction error of µn(x) is 
greater than ɛn=2 and the probability that no point is 
ever sampled near one of the global optimal solutions 
(with radius determined by ɛn=2) still tend to zero. 
Based on the established probability bounds in Lem
mas 8 and 9, by letting ɛn � (16C0 log n=nκ(n))1=2, the 
rate of convergence can be obtained. Notice that this 
rate is an upper bound for the rate of convergence of 
the whole class of GPRS algorithms, with various kinds 
of sampling distributions. This implies that the lower 
bound of the sampling densities (i.e, Assumption 4) 
plays a critical role in establishing the rate of con
vergence. For GPRS algorithms that have adaptive 
sampling distributions, their finite-sample performance 
may be better than this theoretical rate.

It is worth emphasizing again that the rate here is not 
for a specific objective function as typically in the litera
ture. Notice that we may interpret the probability state
ment in Equation (9) as

P |µn(x
∗
n)� g∗ |> 16C0 log n

nκ(n)

� �1=2
( )

� E P |µn(x
∗
n)� g∗ |> 16C0 log n

nκ(n)

� �1=2
�
�
�
�
�
g

( )" #

, 

where the expectation is taken with respect to the distri
bution of the random objective function g. Therefore, 
the rate of convergence in Theorem 2 may be viewed as 
the average rate of convergence (in the typical sense) of 
all objective functions that are sampled randomly from 
the Gaussian process that satisfies Assumption 5.

To understand the upper bound of the rate of conver
gence, we compare it with other rate of convergence 
results in the literature. The first is the EGO algorithm 
of Jones et al. (1998), which similar to GPRS algorithms, 
uses Gaussian processes to guide the searches to solve 
deterministic black-box optimization problems. It was 
proved by Bull (2011) that the rate of convergence (to 
the global optimum) of the EGO algorithm is at least 
Op(n�1=d) for functions in the reproducing-kernel Hil
bert space of the chosen Gaussian process. Compared 
with this result, we have two findings. First, the dimen
sion d has a common and significant impact on the rate 
of convergence of Gaussian process-based algorithms. 
Second, GPRS algorithms for COvS problems converge 
slightly slower than the EGO algorithm. However, we 
think that such difference may be caused by the exis
tence of simulation noises that make the search and esti
mation more difficult.

Next, we consider simple random search algorithms, 
such as the ones of Yakowitz et al. (2000) and Chia and 
Glynn (2013). Even though their practical performances 
are typically not competitive, they often reveal impor
tant insights on the asymptotic properties, such as con
vergence and rate of convergence. The random search 
algorithm with low-dispersion point sets of Yakowitz 
et al. (2000) solves the COvS problems using a multiob
servation approach. The upper bound of its rate of 
convergence is Op((n=log n)�q=(d+2q)

) or Õp(n�q=(d+2q)), 
where the definition of the rate of convergence is simi
lar to ours in this paper and q is a parameter that mea
sures the local Lipschitz condition of the objective 
function g around the global optimal solution x∗. Speci
fically, q satisfies supx∈S(x∗, t)(g(x∗)� g(x)) ≤ Ktq for t ≤ t0 
for some positive constants t0 and K. When q � 1, the 
local Lipschitz condition implies that the first-order 
derivative of g around x∗ is bounded, and the global 
optimal solution can be a boundary point. When q � 2, 
the local Lipschitz condition implies that g is locally 
quadratic around x∗, and the global optimal solutions 
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are in the interior of the feasible set. In the analysis of 
the rate of convergence of GPRS algorithms, we do not 
differentiate whether the global optimal solution is an 
interior point or not, and we assume continuous differ
entiability of the sample paths (of the impose Gaussian 
process), which corresponds to the Lipschitz condition 
with q � 1. In this situation, the upper bounds of rate of 
convergence of the both algorithms are Õp(n�1=(d+2)). 
Actually, under a similar regularity condition, Donoho 
(1994) proves that the optimal rate of convergence for 
nonparametric regression is O(n�1=3) in one-dimensional 
space, which implies that our proved upper bound is 
nearly tight in the one-dimensional problem.

When q � 2, the rate of convergence of the random 
search algorithm with low-dispersion point sets is Õp 
(n�2=(d+4)). Chia and Glynn (2013) prove the same rate of 
convergence of pure random search algorithm under 
similar regularity conditions (i.e., the objective function is 
three times continuously differentiable and has an nega
tive definite Hessian matrix at the unique interior maxi
mizer). This rate of convergence is slightly better than 
ours, which implies that the upper bound of the rate of 
convergence of GPRS algorithms may be improved if the 
sample paths are smoother (e.g., the Gaussian process 
with Gaussian correlation function). However, because of 
the probability inequalities that are used to deal with the 
Gaussian processes, we have not yet found an approach 
to establishing this. We leave this as a topic for future 
research.

4.3. Revised GPRS Algorithms
In this subsection we propose a slightly revised version 
of GPRS algorithms, which improve the computational 
efficiency of the original GPRS algorithms without 
impacting its rate of convergence. This is achieved by 
replacing the original step 2 with the following step 2′. 

Step 2′ (calculation). Set n � rs. Let Xn � Xr(s�1) ∪

{xr(s�1)+1, : : : , xrs} and Gn � ([Gr(s�1)]⊤ , G(xr(s�1)+1), : : : , 

G(xrs))
⊤. Calculate µn(x) according to Equation (2).

Let x†
n � arg maxx∈Xnµn(x), and break the tie arbi

trarily if it exists. Then, construct the sampling distribu
tion fn(x) according to user-specified rules.

The main difference of this revised algorithm to the 
original one is to replace the function best solution x∗n 
with the sample best solution x†

n. In this way, the revised 
algorithm can avoid calculating x∗n � arg maxx∈Xµn(x)
repeatedly, which can significantly reduce the computa
tion overhead of the algorithm (the associated optimiza
tion problem is often nonconvex and difficult), especially 
when the dimension d is large. Although the finite- 
sample performance of the revised algorithm may differ, 
because of the different way to output the current solu
tion (especially in the early iterations), it can be shown 
that the rate of convergence is not affected.

The rate of convergence of the revised algorithm can 
be proved by following the same steps as in this section. 
Here, we omit the detailed analysis and only provide a 
sketch of the proof. Let x†

n � arg maxx∈Xnµn(x). With the 
same A2 and A3 as defined in the proof of Theorem 2, 
one can have P{ |µn(x†

n)� g∗ | > ɛn} ≤ P{A2} +P{A3}. 
Following the same arguments as in the proof of Theo
rem 2, we can show that the convergence rate of µn(x†

n)

is the same as µn(x∗n), which completes the proof.
Notice that the revised algorithm requires Assump

tion 5 to ensure both the convergence and the rate of 
convergence. When using the sample best solution x†

n, to 
prove the almost-sure global convergence of the revised 
algorithm, we need to establish the probability bound of 
the event that no point is ever sampled near the global 
optimal solutions and then, use the Borel–Cantelli lemma 
to prove that such an event does not happen infinitely. 
According to the proof of Lemma 9, this requires the 
boundedness of the derivative surfaces of the Gaussian 
process. However, for general Gaussian processes that 
satisfy Assumption 3 but not Assumption 5, such a prop
erty may not hold, and the revised algorithm may not 
guarantee the convergence.

5. An Example of GPRS Algorithms: The 
GPS-C Algorithm

In this section, we introduce a specific GPRS algorithm 
and use it as an example to discuss the design and 
implementation of a GPRS algorithm. This algorithm is 
an extension of the GPS algorithm of Sun et al. (2014), 
which is originally for DOvS problems, and it is called 
the GPS-C algorithm. Based on the framework of GPRS 
algorithms in Section 2.2, the GPS-C algorithm com
bines the variance of the conditional Gaussian process 
kn(x, x)with µn(x) to construct adaptive sampling distri
butions, and it achieves a seamless integration of esti
mation, exploration, and exploitation. Hence, this 
algorithm is a single-observation integrated COvS algo
rithm. In the following subsections, we will describe 
the sampling distribution of the GPS-C algorithm and 
formally give the GPS-C algorithm. Then, we will dis
cuss several implementation issues of the algorithm 
briefly.

5.1. The GPS-C Algorithm
Sampling distribution is a key element of a random 
search algorithm, which is constructed in each iteration 
to determine where to allocate the simulation effort. As 
shown by Sun et al. (2014), their sampling distribution 
constructed based on the Gaussian process can adap
tively balance the trade-off between exploration and 
exploitation when solving DOvS problems. For COvS 
problems, we can construct the sampling distributions 
in a similar way.
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From Equations (2) and (3), for any x ∈ X , we have
fGP(x) |{Xn, Gn} ~ N (µn(x), kn(x, x)): (13) 

Then, we may define a probability density function 
fn(x) as follows:

fn(x) �
P{Z(x) > c}

R

X
P{Z(z) > c}dz

, x ∈ X , (14) 

where Z(x) ~ N (µn(x), kn(x, x)), c �maxx∈Xµn(x), and 
z ∈ Rd. Notice that c is well defined under Assumptions 1
and 3, which imply that X is compact and µn(x) is contin
uous. This sampling distribution maintains the desirable 
properties of the sampling distribution of the GPS algo
rithm of Sun et al. (2014). (1) It assigns higher probabilities 
to regions that contain good solutions (because of higher 
conditional mean). (2) It assigns higher probabilities to 
less explored regions (because of higher conditional vari
ance). Therefore, it can balance the trade-off between 
exploration and exploitation adaptively. We note that 
similar sampling methods that utilize the probabilistic 
prediction (instead of sole mean prediction) of the 
Gaussian process surrogate model are also used in the 
Bayesian optimization algorithm (i.e., the P algorithm 
(Žilinskas 1985, Calvin and Žilinskas 1999)) and related 
reliability analysis researches (Dubourg et al. 2011, 2013).

Furthermore, as shown by Sun et al. (2014), it is easy 
to ensure the density to satisfy the requirement of 
Assumption 4. Specifically, the user may specify a 
proper lower bound and upper bound for µn(x), say M 
and M, and a lower bound for kn(x, x), say τ2 with τ > 0. 
Then, we can define kcap

n (x, x) �max{τ2, kn(x, x)} and

µcap
n (x) �

M, if µn(x) <M,
M, if µn(x) >M,
µn(x), otherwise:

8
><

>:

The density of the sampling distribution used in the 
algorithm is given by

fn(x) �
P{Z(x) > c}

R

X
P{Z(z) > c} dz

, x ∈ X , (15) 

where Z(x) ~ N (µ
cap
n (x), kcap

n (x, x)), and c �maxx∈Xµ
cap
n (x). 

It is not difficult to see that fn(x) has a lower bound on 
X , which is explicitly stated in Lemma 10, whose proof 
is provided in Section EC.2.2 of the e-companion.

Lemma 10. Let α � 2[1�Φ((M�M)=τ)]=ν(X ) > 0, where 
Φ is the cumulative distribution function of the standard 
normal random variable, and ν(X ) �

R

X
dz for z ∈ Rd is the 

volume of X . Then, fn(x) ≥ α for all x ∈ X .

Lemma 10 ensures that the sampling density func
tion defined in Equation (15) is bounded from below on 
X , which satisfies Assumption 4.

With the adaptive sampling distribution fn(x), we can 
formally describe the GPS-C algorithm as follows using 
the parameters of GPRS algorithms defined in Section 2.2. 

Step 0 (initialization). Impose a Gaussian process 
with µ0 and k0 that satisfy Assumption 3. Specify a r >
0, τ > 0, M, and M. Set s � 0, n � 0, X0 � ∅, and G0 � ∅. 
Furthermore, set f0(x) as a user-specified sampling 
distribution over X .

Step 1 (sampling). Set s � s+ 1. Sample xr(s�1)+1, : : : , xrs 
independently from fn(x), and obtain corresponding 
simulation observations G(xr(s�1)+1), : : : , G(xrs) indepen
dently from all previous observations.

Step 2 (calculation). Set n� rs. Let Xn � Xr(s�1) ∪
{xr(s�1)+1, : : : , xrs} and Gn � ([Gr(s�1)]⊤, G(xr(s�1)+1), : : : , 
G(xrs))

⊤. Calculate µn(x) and kn(x, x) according to Equa
tions (2) and (3). Let x∗n � arg maxx∈Xµn(x), and break 
the tie arbitrarily if it exists. Then, construct the sam
pling distribution fn(x) according to Equation (15).

Step 3 (stopping). If the stopping condition is not 
met, go to step 1; otherwise, stop and output x∗n and 
µn(x

∗
n) as the estimated optimal solution and the esti

mated optimal objective value.
The GPS-C algorithm is an example of an integrated 

GPRS algorithm. It well utilizes the Gaussian process sur
rogate model to construct adaptive sampling distribu
tions (to balance exploration and exploitation) and can be 
expected to have good finite-sample performance. How
ever, the GPS-C algorithm is still a theoretical version. 
There are still several gaps for us to implement this algo
rithm in practice. (1) The parameters of the Gaussian pro
cess may be difficult to determine in advance. (2) The 
variances of the simulation noise are unknown. (3) An 
efficient sampling scheme, which samples design points 
from the sampling distribution, is required. (4) An effi
cient method, which can solve the optimization problem 
x∗n � arg maxx∈Xµn(x), is required. In the following sub
section, we provide some effective approximation meth
ods to address these implementation issues.

5.2. The Implementation of the GPS-C Algorithm
5.2.1. Estimation of the Variances and the Gaussian 
Process Parameters. The need to estimate the Gauss
ian process parameters and the unknown variances of 
the simulation noises is common in kriging-based 
Bayesian optimization algorithms (e.g., the SKO algo
rithm of Huang et al. 2006 and the KGCP algorithm of 
Scott et al. 2011). There are in general two ways to esti
mate them under different contexts. For homoscedastic 
simulation noises, one common way is to use the MLE 
method to estimate the Gaussian parameters µ0, τ2, and 
θ, together with the variance λ2. The readers can refer 
to Stein (1999) and Huang et al. (2006) for more infor
mation about this method. In a typical kriging-based 
Bayesian optimization algorithm, the variance and the 
Gaussian process parameters are updated in each itera
tion of the algorithm based on current observations. 
However, in the GPS-C algorithm, we do not update 
these parameters at each iteration. Instead, the users 
may use the MLE method to estimate these parameters 
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at the initialization stage or in the first few iterations. This 
is because the GPS-C algorithm, as a random search- 
based algorithm, usually requires large simulation bud
gets to solve optimization problems. The choice of not 
updating these parameters repeatedly can alleviate the 
computational burden because the matrix inversion in 
the MLE method may become prohibitive with more and 
more sampled points (Sun et al. 2014).

For heteroscedastic simulation noises, a common 
way is to estimate the unknown variances first and then 
use an MLE method to estimate the Gaussian process 
parameters based on current observations and the esti
mated variances. The readers can refer to Ankenman 
et al. (2010) for more information about this approach. 
We also adopt the two-step approach in this paper. To 
estimate the unknown variances under the heterosce
dastic context, multiple observations are typically 
required at each sampled point, and the variances are 
estimated using the conventional sample variance esti
mator. However, in the GPS-C algorithm, only one 
observation is taken at each sampled point. To estimate 
the unknown variances, a kernel-based sample vari
ance estimator is proposed in this paper. Define a uni
form kernel function K(u) � 1

(2h)d
1{‖u=h‖∞≤1} in Rd, where 

h is the single bandwidth of the kernel. With the obser
vations {Xn, Gn}, the unknown variance λ2(x) can be 
estimated using

λ̂
2
(x) �

1
k
Xk

i�1
(Gi� m̂NW(x))2, (16) 

where k is the number of sampled points within the ker
nel ‖(x′� x)=h‖∞ ≤ 1 centered at x and m̂NW(x) is the 
classical Nadaraya–Watson (NW) estimator. This NW 
estimator is used to estimate the unknown objective 
function and is defined as

m̂NW(x) �
Pn

i�1 GiK(x� xi)
Pn

i�1 K(x� xi)
:

It is not difficult to prove that as the number of sampled 
points n goes to infinity, this kernel-based sample vari
ance estimator is asymptotically consistent with a 
decreasing bandwidth hn to zero. Interested readers can 
refer to Schimek (2013) for more information.

Based on the estimated variance λ̂2
(xi) at each 

xi ∈ Xn, the Gaussian process parameters µ0, τ2, and θ 
can be estimated using the MLE method (Ankenman 
et al. 2010). Under the heteroscedastic context, we can 
also estimate and update the Gaussian process para
meters only in the initialization stage or early iterations 
of the GPS-C algorithm. The variances need to be 
updated in each iteration after obtaining new observa
tions. By replacing the Gaussian process parameters 
and the variance with their estimated counterparts in 

Equations (2) and (3), we can use

µ̂n(x)� µ̂0(x)+ k̂0(x,Xn)[k̂0(Xn,Xn)+Σ̂n]�1
[Gn�µ̂0(X

n)],
(17) 

k̂n(x,x′)� k̂0(x,x′)� k̂0(x,Xn)[k̂0(Xn ,Xn)+Σ̂
n
]
�1k̂0(Xn,x′)

(18) 

to estimate the conditional mean and the conditional 
variance at each x ∈ X . Based on these values, we can 
construct sampling distributions using the same way as 
discussed in Section 5.1.

5.2.2. Sampling Scheme. In random search-based algo
rithms, it is not always straightforward to sample 
design points from the sampling distributions. Notice 
that the explicit form of fn(x) of the GPS-C algorithm is 
typically not applicable because the denominator 
involves an integration that is computationally expen
sive to calculate. Therefore, we propose two sampling 
algorithms to sample design points approximately. 
These two algorithms are the extensions of the sam
pling schemes of Sun et al. (2014) to the continuous con
text. Because of space limitations, we provide these two 
sampling schemes in Section EC.4 of the e-companion.

5.2.3. Finding the Best Solution. The last implementa
tion issue to address is that the GPS-C algorithm needs 
to find the optimal solution of the Gaussian surrogate 
model (i.e., x̂∗n � arg maxx∈X µ̂n(x)) to construct the sam
pling distribution in each iteration of the algorithm. 
Such an issue is common for surrogate-based optimiza
tion algorithms. For example, the EGO algorithm of 
Jones et al. (1998), the SKO algorithm of Huang et al. 
(2006), and the KGCP algorithm of Scott et al. (2011) all 
need to solve some optimization problem to determine 
the next sampling decision, and the metamodel-based 
optimization algorithm of Osorio and Bierlaire (2013) 
needs to solve the optimal solution of the metamodel 
to guide the sampling. Additionally, for all these 
surrogate-based optimization algorithms, the optimal 
solution of the surrogate model needs to be reported 
when the algorithm terminates or even during the itera
tions (for monitoring the performance of the algorithm). 
Typically, these optimization problems are nonconvex 
and are computationally difficult to solve. In the GPS-C 
algorithm, we offer some methods to deal with this issue. 
If the imposed Gaussian process satisfies Assumption 5, 
we can use the revised algorithm and solve the sample 
best solution (i.e., x̂†

n � arg maxx∈Xn µ̂n(x)) for both con
structing the sampling distribution and reporting the cur
rent solution. If Assumption 5 is not satisfied, we can 
solve x̂∗n � arg maxx∈X µ̂n(x) approximately using the fol
lowing two approaches. When the dimension is low (e.g., 
d is small), one may simply evaluate µ̂n(x) on a dense 
grid within X and find the optimal solution of the grid. 
When the dimension is high, one may set x̂†

n as the initial 
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solution and use some nonlinear optimization solvers 
(e.g., the fmincon in MATLAB) to find an approximate 
optimal solution.

Before we show the practical performance of the 
GPS-C algorithm, the computational complexity of the 
algorithm is briefly discussed. We note that it is difficult 
to calculate the overall computational complexity of the 
algorithm for three reasons. (1) The computational 
complexity depends on the chosen component of the 
algorithm (e.g., which sampling scheme is used). (2) 
Some complex optimization problems need to be solved 
in the algorithm (e.g., the best solution finding in step 2 
and the MLE method used to estimate the Gaussian pro
cess parameters). (3) The simulation models of COvS 
problems in practice can be large and complex, and they 
contribute greatly to the overall computational com
plexity. Nevertheless, we can come up with some meth
ods to reduce the computational complexity of certain 
parts of the algorithm. For instance, to build a Gaussian 
process surrogate model in each iteration, the inverse of 
a covariance matrix (i.e., [k0(Xn, Xn) +Rn]�1) must be 
calculated, which has an O(n3) complexity and scales 
poorly with n. To reduce its computation complexity, 
we can record the inverse matrix in each iteration and 
use the block matrix inversion (Bernstein 2009) to calcu
late the covariance matrix inverse for next iteration. In 
this way, its computational complexity can be reduced 
to O(n2). This method is used in the numerical studies 
of Section 6, where we show the empirical rate of con
vergence of the GPS-C algorithm.

6. Numerical Experiments
In this section, we conduct numerical experiments to 
understand the empirical performance of a specific GPRS 
algorithm (i.e., the GPS-C algorithm). We first test and 
verify the theoretical properties of the GPS-C algorithm 
on problems that are generated from Gaussian processes, 
and we then compare the GPS-C algorithm with other 
widely used algorithms (including kriging-based Bayes
ian optimization algorithms and random search based 
algorithms) on various test problems. Additionally, the 
influence of dimensionality on the rate of convergence of 
the GPS-C algorithm is also investigated. Throughout 
this section, we adopt two performance measures. One is 
the estimated objective function value at the estimated 
optimal solution (i.e., µ̂n(x̂

∗
n)), and the other is the true 

objective function value at the estimated optimal solution 
(i.e., g(x̂∗n)). All the numerical experiments are conducted 
in MATLAB, and the GPS-C algorithm is implemented 
with the Markov chain coordinate sampling scheme. The 
detailed parameters of algorithms in each problem are 
provided in Section EC.5 of the e-companion together 
with some supplementary figures. The codes used in this 

section can be found at https://github.com/xiuxianwa 
ng/GPS-C-algorithm.

6.1. Empirical Performance on 
Generated Problems

In this subsection, our goal is to check whether the 
empirical performances of the GPS-C algorithm are 
consistent with the theoretical analysis. To fulfill this 
goal, we do not use a specific objective function but use 
a number of continuous functions sampled from a 
Gaussian process (as specified in Assumptions 3 and 5) 
on the space [0, 1]d to show the empirical convergence 
and the rate of convergence of the GPS-C algorithm. In 
addition, the variance of the simulation noise is given 
as in Assumption 2.

We first let d� 2. On the two-dimensional space 
[0, 1]2, a Gaussian process having Gaussian correlation 
function with µ0 � 1, τ2 � 4, and u � (80, 80) is used to 
generate 30 sample paths to represent 30 objective func
tions, and a random variable following N(0, 0:25) is 
added at any point as the simulation noise. To generate 
these sample paths efficiently, we take observations of 
this Gaussian process on a uniform grid containing 400 
points and fit the conditional sample path using the sto
chastic kriging method (Ankenman et al. 2010) with 
artificial intrinsic noise (normally distributed with 
mean 0 and variance 0.1) for numerical stability. Such 
30 conditional sample paths are used as objective func
tions, and two examples are shown in Figure EC.1 in 
the e-companion. Then, we identify the maximum 
value of each objective function (by evaluating a dense 
grid with step size 0.01) and run the GPS-C algorithm to 
search for this maximum value and its corresponding solu
tion. The Gaussian process parameters of the GPS-C algo
rithm are the same as those used to generate the objective 
functions, and other parameters are listed in Table EC.1 in 
the e-companion. In each iteration of the algorithm, we use 
the same dense grid as before to approximately solve x̂∗n �
arg maxx∈X µ̂n(x) both for constructing the sampling dis
tribution and for reporting the current best solution. Fig
ure 1(a) shows all 30 empirical sample paths of the GPS-C 
algorithm in terms of the optimality gap | µ̂n(x̂∗n)� g∗ | as a 
function of sample size n. Figure 1(b) shows the average 
optimality gap with respect to the sample size n on a log- 
log plot to show the empirical rate of the algorithm. It can 
be observed that the optimality gaps decrease quickly, and 
the average gap appears to shrink in a rate faster than 
n�1=4, which is its theoretical rate of convergence.

We also replicate this experiment on a three-dimensional 
space [0, 1]3 with the parameters of the Gaussian process 
being µ0 � 1, τ2 � 9, and u � (40, 40, 40). Figure 2 shows 
similar results. Because of the numerical difficulties in 
generating sample paths from Gaussian process in 
higher dimensions, we cannot try problems with d > 3. 
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We leave the discussion on the influence of dimension
ality to Section 6.3.

6.2. Empirical Performance on Various 
Test Problems

In this subsection, our goal is to check the empirical per
formance of the GPS-C algorithm on problems that are 
not generated from Gaussian processes. For comparison, 
two kriging-based Bayesian optimization algorithms (i.e., 
the SKO algorithm of Huang et al. 2006 and the KGCP 
algorithm of Scott et al. 2011) and three random search- 
based algorithms (i.e., the ASR algorithm of Andradóttir 
and Prudius 2010 and the IHR-SO and AP-SO algorithms 

of Kiatsupaibul et al. 2018) are also implemented. In their 
corresponding papers, the kriging-based Bayesian opti
mization algorithms and the random search-based algo
rithms are implemented and tested using problems with 
homoscedastic and heteroscedastic noises, respectively. 
Hence, we add simulation noises with either equal var
iances or unequal variances to the objective functions in 
the comparison with each type of algorithms. The GPS-C 
algorithm is first compared with the SKO and KGCP 
algorithms on problems with homoscedastic noises in 
Section 6.2.1, and it is then compared with the ASR, IHR- 
SO, and AP-SO algorithms on problems with heterosce
dastic noises in Section 6.2.2.

Figure 1. (Color online) Empirical Performance of the GPS-C Algorithm on Two-Dimensional Problems 
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Figure 2. (Color online) Empirical Performance of the GPS-C Algorithm on Three-Dimensional Problems 
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6.2.1. Optimization Problems with Homoscedastic 
Noises. The GPS-C, SKO, and KGCP algorithms are 
tested and compared on three two-dimensional COvS 
problems with homoscedastic noises. Two of them are 
the Branin problem and the six-hump problem, which 
are used in Huang et al. (2006) and Scott et al. (2011). The 
other one is a problem with multiple local optima, whose 
discrete version is used in Sun et al. (2014) to investigate 
the performance of the GPS algorithm for DOvS pro
blems. Because this problem has 25 local optima and 
looks like hills, we call it the “Hills” problem for short. 
The expressions of the three problems are given in Section 
EC.5 of the e-companion, and their optimal values and 
solutions are summarized in Table EC.2 therein. Simula
tion noises with distribution N(0,λ2) are added, and dif
ferent values of λ2 are considered.

For each problem, the three algorithms all start with 
an initial Latin hypercube sampling (LHS) design of 20 
points. The Gaussian process parameters and the var
iances of noises used in the three algorithms are esti
mated and updated until the sample size reaches 100 
(for the Branin and six-hump problems) or 300 (for the 
Hills problem). The other parameters of GPS-C algo
rithm are listed in Table EC.3 in the e-companion. Note 
that as mentioned in Section 5.2.3, all three algorithms 
need to solve some optimization problems on their 
domains for sampling in each iteration and reporting 
current solutions. For efficient computation and fair 
comparison, we adopt the exact same method to solve 
these optimization problems for the three algorithms. 
We first evaluate the corresponding objective function 
on a grid (with step sizes 0.3, 0.08, and 2 for the Branin, 
six-hump, and Hills problems, respectively), and then, 
we conduct local search starting from the optimal solu
tion found on the grid using fmincon in MATLAB. The 
performances of the algorithms are measured using the 
absolute gap between g(x̂∗n) and g∗, and we run each 
algorithm 30 times to calculate the mean performance.

Table 1 shows the performances of the SKO algo
rithm, the KGCP algorithm, and the GPS-C algorithm 
up to different sample sizes. It can be observed that all 
three algorithms perform well on these optimization 
problems. Comparatively, the SKO algorithm and the 
KGCP algorithm perform better than the GPS-C algorithm 

in the early stage. However, when sample size reaches 
800, the performance of the GPS-C algorithm appears 
better than the other two algorithms in most cases. This 
comparison shows different features of the kriging- 
based Bayesian optimization algorithms and the GPS-C 
algorithm, which is a random search-based algorithm.

6.2.2. Optimization Problems with Heteroscedastic 
Noises. In this part, we test the performances of the GPS- 
C, ASR, IHR-SO, and AP-SO algorithms and compare 
them on two COvS problems with heteroscedastic noises. 
The first one is the 2-dimensional Hills problem used in 
Section 6.2.1, and the second one is the 10-dimensional 
Rosenbrock problem. The detailed information of the 
Rosenbrock problem is given in Section EC.5 of the 
e-companion. Compared with the Rosenbrock problem 
used by Kiatsupaibul et al. (2018) to test the performance 
of the shrinking-ball algorithms (i.e., IHR-SO and AP-SO), 
we use a smaller scaling constant for the problem in this 
paper. For the Hills problem and the Rosenbrock problem, 
we add simulation noises with distributions N(0, (1=4g)
(x)) and N(0, 0:01(1+ |g(x) | )2) for x ∈ X , respectively.

The kernel-based method is used in the GPS-C algo
rithm to estimate the variance at each sampled point. 
The bandwidth of the kernel is set as hn � h0(n+ 1)�β, 
where h0 is the initial bandwidth, β is the contracting 
rate, and n is the number of sampled points. For the 
Hills problem, we use an LHS design of 100 points in 
the initialization stage to estimate the parameters of 
Gaussian process and the variances of the noises for the 
GPS-C algorithm, and then, we update the Gaussian 
process parameters at the 20th and 40th iterations. The 
same method as in Section 6.2.1 is used to find x̂∗n in 
each iteration. For the Rosenbrock problem, because 
the dimensionality is high, the GPS-C algorithm starts 
with an initial design of 800 points. Among these 
points, 400 points are generated according to the LHS 
design, and another 400 points are randomly sampled 
within small balls centered at the previous 400 points in 
a point-to-point manner. The variances and the para
meters of Gaussian process are then estimated for the 
GPS-C algorithm. To find x̂∗n in each iteration, the fmincon 
in MATLAB is used with the sample best solution as 
the initial solution (see Section 5.2.3). The parameters of 

Table 1. The Performance of SKO, KGCP, and GPS-C Algorithms up to Different Sample Size

Problem

SKO KGCP GPS-C

80 200 400 800 80 200 400 800 80 200 400 800

Branin (λ2 � 0:12) 0.009 0.006 0.004 0.003 0.020 0.003 0.002 0.002 0.754 0.015 0.003 0.002
Branin (λ2 � 0:52) 0.031 0.020 0.016 0.014 0.025 0.015 0.012 0.010 0.249 0.013 0.010 0.007
Six hump (λ2 � 0:12) 0.006 0.004 0.003 0.002 0.010 0.003 0.003 0.002 0.152 0.005 0.002 0.001
Six hump (λ2 � 0:52) 0.078 0.026 0.018 0.011 0.070 0.020 0.012 0.009 0.332 0.012 0.007 0.005
Hills (λ2 � 0:52) 0.674 0.357 0.043 0.013 0.711 0.143 0.080 0.027 3.217 0.377 0.009 0.002
Hills (λ2 � 12) 1.449 0.516 0.066 0.051 0.934 0.185 0.019 0.016 3.642 0.667 0.034 0.009

Wang et al.: Gaussian Process-Based Random Search 
Operations Research, 2025, vol. 73, no. 1, pp. 385–407, © 2023 INFORMS 401 



the ASR, IHR-SO, and AP-SO algorithms are basically 
the same as those in Andradóttir and Prudius (2010) 
and Kiatsupaibul et al. (2018). For each problem, all the 
parameters (that are not estimated) of the four algo
rithms are listed in Table EC.4 in the e-companion.

Figure 3 shows the 30 replications of the four algo
rithms when solving the Hills problem in terms of 
g(x̂∗n) as a function of the sample size n. It can be 
observed that the GPS-C algorithm performs better 
than the other three random search algorithms. The 
GPS-C algorithm can soon find good solutions that are 
close to the global optimal solution. This comparison 
may imply that the GPS-C algorithm can sample 
design points in a more adaptive manner and con
verge more quickly. Figure 4 shows the 30 replications 
of the four algorithms when solving the the Rosen
brock problem, and similar results are observed. The 
GPS-C algorithm identifies good solutions in early 
iterations and approaches the global optimal function 
value gradually in most of the 30 replications. Besides 

the ability to balance exploration and exploitation 
adaptively, this excellent performance can also be 
attributed partly to the characteristics of the Rosen
brock function, which is quite flat in the neighborhood 
of the global optimal solution.

To further illustrate how the GPS-C algorithm works, 
in Figure 5 we plot the sampled points of the four algo
rithms up to different sample sizes when solving the 
Hills problem. It can be observed that the GPS-C algo
rithm achieves a good balance between exploration and 
exploitation compared with the other two algorithms. 
Many points are sampled in good regions (around the 
best solution and the two second-best solutions), when 
the algorithm keeps exploring the whole feasible re
gion. The comparison of these three algorithms illustrates 
how the constructed sampling distributions of the GPS-C 
algorithm can guide the searches in each iteration.

Lastly, we also implement the revised GPS-C algo
rithm (as described in Section 4.3) to solve the two pro
blems. The performance of the revised GPS-C algorithm 

Figure 3. Performance of the GPS-C and Other Compared Algorithms for the Hills Problem 
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Notes. (a) GPS-C algorithm. (b) ASR algorithm. (c) IHR-SO algorithm. (d) AP-SO algorithm.
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is shown in Figure EC.2 in the e-companion with the 
same performance measure. It can be observed that the 
performance of the revised GPS-C algorithm is similar 
to that of the original GPS-C algorithm, whereas the 
computation burden for finding the optimal solution in 
each iteration is lower.

Several conclusions can be made from the experi
ment results in Sections 6.2.1 and 6.2.2. First, the global 
convergence of the GPS-C algorithm is verified by test 
problems with unknown (both equal and unequal) var
iance of simulation noise, and the performance of the 
GPS-C algorithm is robust. Second, numerical experi
ments show that the GPS-C algorithm maintains the 
advantages of the GPS algorithm (Sun et al. 2014) in bal
ancing exploration and exploitation, and its finite- 
sample performance appears better than the other three 
random search-based algorithms, which use more rigid 
sampling schemes.

6.3. The Impact of the Dimensionality on the Rate 
of Convergence

In this subsection, our goal is to understand the impact of 
dimensionality on the rate of convergence of the GPS-C 
algorithm. Because it is difficult to generate sample paths 
from a high-dimensional Gaussian process, we instead 
use the 4-, 6-, 8-, and 10-dimensional weighted sphere 
problems to investigate the impact of dimensionality. For 
the four problems, simulation noises with distribution 
N(0, 0:12) are added. The Gaussian process parameters 
and the variances of the noises are estimated with an LHS 
design of 600 points, and other parameters are listed in 
Table EC.6 in the e-companion.

Figure 6 shows the average optimality gap (i.e., 
| µ̂(x̂∗n)� g∗ | ), with respect to the sample size n on a log- 
log plot. From these plots, we can see that the observed 
rates of convergence are better than the theoretical rates 
and that the dimensionality of the problem does not 

Figure 4. Performance of the GPS-C and Other Compared Algorithm for the 10-Dimensional Rosenbrock Problem 
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Notes. (a) GPS-C algorithm. (b) ASR algorithm. (c) IHR-SO algorithm. (d) AP-SO algorithm.
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Figure 5. (Color online) The Sampled Points of the GPS-C, ASR, IHR-SO, and AP-SO Algorithms 
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have significant impact on the empirical rate of conver
gence of the GPS-C algorithm. We suspect that it is 
because the weighted sphere function is smoother than 
the typical sample paths from Gaussian processes satis
fying either Assumption 3 or Assumption 5. As many 
practical problems in the field of operations research 
and management sciences are in general quite smooth, 
we suspect that the performances of the GPS-C algo
rithm on the weighted sphere functions are more com
mon and more representative.

7. Conclusions
In this paper, we propose a framework of Gaussian 
process-based random search algorithms for the COvS 
problem. Algorithms under the GPRS framework (1) 
use a Gaussian process surrogate model to estimate 
the objective function and (2) randomly sample solu
tions from a sequence of lower-bounded sampling 

distributions. Under heteroscedastic and known simu
lation noises, we prove the global convergence of GPRS 
algorithms. Moreover, when the objective functions are 
sampled from a Gaussian process having continuously 
differentiable sample paths, we prove the upper bound 
of the rate of convergence of GPRS algorithms, which 
can be Õp(n�1=(d+2)). Then, the GPS-C algorithm is pro
posed as an example to illustrate how to design and 
implement an integrated GPRS algorithm. Numerical 
experiments show that the GPS-C algorithm performs 
well, even for problems with unknown variances of 
simulation noises.

There are several directions to potentially extend this 
work. First, the global convergence of GPRS algorithms 
with unknown and heteroscedastic simulation noises may 
be studied. This is an important theoretical extension, 
although it may be quite challenging. Second, it is interest
ing to examine whether the faster rate of convergence may 

Figure 6. (Color online) Empirical Rate of Convergence of the GPS-C Algorithm on 4-, 6-, 8-, and 10-Dimensional Weighted 
Sphere Problems 
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Notes. (a) Four-dimensional problem. (b) Six-dimensional problem. (c) Eight-dimensional problem. (d) Ten-dimensional problem.
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be established for GPRS algorithms by using either shar
per inequalities or additional assumptions. Lastly, it may 
be interesting to further test the performance of the GPS-C 
algorithm in different scenarios and develop an open- 
source COvS solver based on the algorithm.
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Endnote
1 Let {an}n≥1 be a sequence such that an > 0 for all n. A function h(n) 
of n is called Ω(an) if there is a c ∈ (0,∞) such that for all 
n ∈ N, h(n) ≥ can. A function h(n) is called O(an) if there is a C ∈
(0,∞) such that for all n ∈ N, 0 < h(n) ≤ Can. A function h(n) is called 
Θ(an) if it is both Ω(an) and O(an).
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Calvin J, Žilinskas A (1999) On the convergence of the p-algorithm 
for one-dimensional global optimization of smooth functions. J. 
Optim. Theory Appl. 102(3):479–495.

Chang KH, Hong LJ, Wan H (2013) Stochastic trust-region response- 
surface method (strong)—A new response-surface framework 
for simulation optimization. INFORMS J. Comput. 25(2):230–243.

Chia YL, Glynn PW (2013) Limit theorems for simulation-based 
optimization via random search. ACM Trans. Model. Comput. 
Simulation 23(3):1–18.

Devroye L (1978) The uniform convergence of nearest neighbor 
regression function estimators and their application in optimi
zation. IEEE Trans. Inform. Theory 24(2):142–151.

Ding L, Hong LJ, Shen H, Zhang X (2022) Knowledge gradient for 
selection with covariates: Consistency and computation. Naval 
Res. Logist. 69(3):496–507.

Donoho DL (1994) Asymptotic minimax risk for sup-norm loss: Solution 
via optimal recovery. Probab. Theory Related Fields 99(2):145–170.

Dubourg V, Deheeger F, Sudret B (2011) Metamodel-based impor
tance sampling for the simulation of rare events. Preprint, sub
mitted April 18, https://arxiv.org/pdf/1104.3476.pdf.

Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based impor
tance sampling for structural reliability analysis. Probab. Engrg. 
Mechanics 33:47–57.

Durrett R (2010) Probability: Theory and Examples, 4th ed. (Cambridge 
University Press, Cambridge, UK).

Ensor KB, Glynn PW (1997) Stochastic optimization via grid search. 
Yin GG, Zhang Q, eds. Lectures in Applied Mathematics, Mathe
matics of Stochastic Manufacturing Systems, vol. 33 (American 
Mathematical Society, Providence, RI), 89–100.

Fan Q, Hu J (2018) Surrogate-based promising area search for 
Lipschitz continuous simulation optimization. INFORMS J. 
Comput. 30(4):677–693.

Gut A (2013) Probability: A Graduate Course, vol. 75 (Springer Science 
& Business Media, New York).

Hu J, Hu P (2011) Annealing adaptive search, cross-entropy, and 
stochastic approximation in global optimization. Naval Res. 
Logist. 58(5):457–477.

Hu J, Fu MC, Marcus SI (2007) A model reference adaptive search 
method for global optimization. Oper. Res. 55(3):549–568.

Huang D, Allen TT, Notz WI, Zeng N (2006) Global optimization of 
stochastic black-box systems via sequential kriging meta-mod
els. J. Global Optim. 34(3):441–466.

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization 
of expensive black-box functions. J. Global Optim. 13(4):455–492.

Kiatsupaibul S, Smith RL, Zabinsky ZB (2018) Single observation 
adaptive search for continuous simulation optimization. Oper. 
Res. 66(6):1713–1727.

Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum 
of a regression function. Ann. Math. Statist. 23(3):462–466.

Kleijnen JP (1998) Experimental design for sensitivity analysis, opti
mization, and validation of simulation models. Banks J, ed. 
Handbook of Simulation (John Wiley & Sons, New York), 173–223.

Kushner HJ, Yin G (1997) Stochastic Approximation Algorithms and 
Applications (Springer, New York).

Osorio C, Bierlaire M (2013) A simulation-based optimization frame
work for urban transportation problems. Oper. Res. 61(6):1333–1345.

Picheny V, Wagner T, Ginsbourger D (2013) A benchmark of 
kriging-based infill criteria for noisy optimization. Structural 
Multidisciplinary Optim. 48(3):607–626.

Rasmussen CE, Williams CK (2006) Gaussian Processes for Machine 
Learning (MIT Press, Cambridge, MA).

Robbins H, Monro S (1951) A stochastic approximation method. 
Ann. Math. Statist. 22(3):400–407.

Schimek MG (2013) Smoothing and Regression: Approaches, Computa
tion, and Application (John Wiley & Sons, New York).

Scott W, Frazier P, Powell W (2011) The correlated knowledge gradi
ent for simulation optimization of continuous parameters using 
Gaussian process regression. SIAM J. Optim. 21(3):996–1026.
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