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E-Companion

EC.1. Proof of Theorem 1

Proof: Let V (1)(s) and V (2)(s) denote the first- and second-order derivatives of V (s). By Taylor’s Theo-

rem,

V (S(t)) = V (s0) +V (1)(s0)(S(t)− s0) +
1

2
V (2)(S̃t)(S(t)− s0)2,

where S̃t is between s0 and S(t), which is also a random variable. Then, L(S(t)) in (2) can be written as

L(S(t)) =−1

2
V (2)(S̃t)(S(t)− s0)2,

and L†(S(t)) in (3) can be written as

L†(S(t)) =
(

∆†(s0)−V (1)(s0)
)

(S(t)− s0)− 1

2
V (2)(S̃t)(S(t)− s0)2.

Before we consider the variances of L(S(t)) and L†(S(t)), we first establish some convergence results

that will be used later. Under assumption that sup0<t≤th E [eθXt ] <∞ for all |θ| ≤ h, for some ε > 0 and

t1 = min
{
th,
(

h
4+ε

)2}
,

sup
0<t≤t1

E
[
|S(t)|4+ε

]
= sup

0<t≤t1
E

[(
s0e

at+
√
tXt

)4+ε]
= sup

0<t≤t1
s4+ε0 e(4+ε)atE

[
e(4+ε)

√
tXt

]
<∞. (EC.1)

Then from Hölder’s inequality, we have sup0<t≤t1 E [|S(t)|c+ε]<∞, for c= 2,3,4. Since Xt
d−→X as t→ 0+,

then at+
√
tXt

d−→ 0 thus S(t)
d−→ s0. Then by the Theorem 25.12 (convergence of expectation) of Billingsley

(1995) and its corollary, we immediately have

E [S(t)c]→E [sc0] = sc0 as t→ 0+, for c= 1,2,3,4. (EC.2)

Besides, notice that

S(t)− s0√
t

= s0
exp

(
at+

√
tXt

)
− 1

√
t

= s0
eξt(at+

√
tXt)√

t
(by Taylor’s theorem)

= s0e
ξt(a
√
t+Xt),

where ξt is between 0 and at+
√
tXt. Since at+

√
tXt

d−→ 0 as t→ 0+, then ξt
d−→ 0 thus eξt

d−→ 1. Hence

S(t)− s0√
t

d−→ s0X as t→ 0+. (EC.3)

Moreover, for p= 4+ε
3+ε

> 1 and q= 4 + ε such that 1
p

+ 1
q

= 1,

E

[∣∣∣∣S(t)− s0√
t

∣∣∣∣3+ε
]

=E
[
|s0eξt |3+ε

∣∣a√t+Xt

∣∣3+ε]
≤
(
E
[
|s0eξt |4+ε

]) 1
p

(
E
[∣∣a√t+Xt

∣∣(3+ε)q]) 1
q

. (by Hölder’s inequality)
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Since ξt is between 0 and at+
√
tXt, s0e

ξt is between s0(> 0) and S(t)(≥ 0). Therefore s0e
ξt < s0 + S(t).

By (EC.1) and Minkowski inequality, it is easy to see sup0<t≤t1 E [|s0eξt |4+ε]<∞. On the other hand, the

assumption that sup0<t≤th E [eθXt ]<∞ for all |θ| ≤ h implies that sup0<t≤th E
[∣∣Xt

∣∣c]<∞ for any finite c.

So again by Minkowski inequality, sup0<t≤th E
[∣∣a√t+Xt

∣∣(3+ε)q]<∞. Thus, we can see that

sup
0<t≤t1

E

[∣∣∣∣S(t)− s0√
t

∣∣∣∣3+ε
]
<∞. (EC.4)

Then, with the same arguments used for (EC.2), from (EC.3) we can have

E

[(
S(t)− s0√

t

)c]
→E [(s0X)c] = sc0E [Xc] as t→ 0+, for c= 1,2,3. (EC.5)

Now we consider the variance of L(S(t)) and L†(S(t)). Due to (EC.2), these variances are well defined at

least for small t. And

Var[L†(S(t))]−Var[L(S(t))] = b2Var [S(t)− s0]− bCov
[
S(t)− s0, V (2)(S̃t)(S(t)− s0)2

]
, (EC.6)

where b , ∆†(s0) − V (1)(s0) is a nonzero constant. Next, we will show that Var[S(t) − s0] = Θ(t)¶ and

Cov[S(t)− s0, V (2)(S̃t)(S(t)− s0)2] = O(t3/2) as t→ 0+. The first result holds because the convergence in

(EC.5) implies that

Var [S(t)− s0]

t
=E

[(
S(t)− s0√

t

)2
]
−E2

[
S(t)− s0√

t

]
→ s20

(
E
[
X2
]
−E2 [X]

)
= s20Var[X] as t→ 0+,

where 0<Var[X]<∞. To see the second result, first notice that

Cov
[
S(t)− s0, V (2)(S̃t)(S(t)− s0)2

]
t3/2

=E

[
V (2)(S̃t)

(
S(t)− s0√

t

)3
]
−E

[
S(t)− s0√

t

]
E

[
V (2)(S̃t)

(
S(t)− s0√

t

)2
]
.

(EC.7)

Since S̃t is between s0 and S(t) and S(t)
d−→ s0 as t→ 0+, then S̃t

d−→ s0 thus V (2)(S̃t)
d−→ V (2)(s0). So, together

with (EC.3),

V (2)(S̃t)

(
S(t)− s0√

t

)c
d−→ V (2)(s0)sc0X

c as t→ 0+, for c= 2,3.

Then due to the assumption that V (s) is bounded above and the boundedness result of S(t)−s0√
t

in (EC.4),

with arguments similar as before we will have

E

[
V (2)(S̃t)

(
S(t)− s0√

t

)c]
→E

[
V (2)(s0)sc0X

c
]

= V (2)(s0)sc0E [Xc] , for c= 2,3. (EC.8)

By (EC.5), (EC.7) and (EC.8),

Cov
[
S(t)− s0, V (2)(S̃t)(S(t)− s0)2

]
t3/2

→ V (2)(s0)s30
(
E
[
X3
]
−E [X]E

[
X2
])

as t→ 0+,

where E [Xc]<∞ for c= 1,2,3. So, we have

bCov
[
S(t)− s0, V (2)(S̃t)(S(t)− s0)2

]
b2Var [S(t)− s0]

→ 0 as t→ 0+,

which implies that there exists a τ > 0 such that when t < τ , bCov[S(t) − s0, V
(2)(S̃t)(S(t) − s0)2] <

b2Var[S(t)− s0]. Therefore, by (EC.6), Var (L(S(t)))<Var (L†(S(t))) for t < τ . �

¶ We say f(t) = O(g(t)) as t→ 0 if and only if there exists positive numbers δ and M such that |f(t)/g(t)| ≤M
when 0< |t|< δ; We say f(t) = Θ(g(t)) as t→ 0 if and only if there exists positive numbers δ, M and m such that
m≤ |f(t)/g(t)| ≤M when 0< |t|< δ.
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EC.2. Verification for Heston Model

We verify that the assumption in Theorem 1 that S(t) = s0 exp(at+
√
tXt), where Xt

d−→X with E [X4]<∞

and Var[X]> 0 holds for the following Heston model:

dS(t) = rS(t)dt+
√
νtS(t)dW S

t ,

dνt = κ[θ− νt]dt+σ
√
νtdW

ν
t ,

where W S
t and W ν

t are Brownian motions with correlation ρ. The initial values s0 and ν0 are positive. The

underlying asset price at time t, given the values of s0 and ν0, can be written as

S(t) = s0 exp

(
rt− 1

2

∫ t

0

νsds+ ρ

∫ t

0

√
νtdW

S
s +

√
1− ρ2

∫ t

0

√
νsdW

ν
s

)
.

In this case, the Xt in that assumption is as follows:

Xt =−
∫ t
0
νsds

2
√
t

+
ρ
∫ t
0

√
νsdW

S
s√

t
+

√
1− ρ2

∫ t
0

√
νsdW

ν
s√

t
. (EC.9)

Since νs is pathwise continuous, the mean value theorem,
∫ t
0
νsds= tν̃t where ν̃t is between ν0 and νt. Since

νt
p−→ ν0 as t→ 0+, then ν̃t

p−→ ν0. Hence,∫ t
0
νsds

2
√
t

=
tν̃t

2
√
t

p−→ 0 as t→ 0+.

Next, we consider the second and third terms of Xt in (EC.9). By the fundamental theorem of stochastic

calculus (see Theorem 1.1 in Isaacson (1969)), we have

1

W S
t

∫ t

0

√
νsdW

S
s

p−→
√
ν0 as t→ 0+.

So, as t→ 0+,
ρ
∫ t
0

√
νsdW

S
s√

t
= ρZS

1

W S(t)

∫ t

0

√
νsdW

S
s

p−→ ρ
√
ν0Z

S,

and √
1− ρ2

∫ t
0

√
νsdW

ν
s√

t
=
√

1− ρ2Zν 1

W S(t)

∫ t

0

√
νsdW

S
s

p−→
√

1− ρ2
√
ν0Z

ν ,

where ZS and Zν are standard normal random variables with correlation ρ.

Finally, Xt
p−→ ρ
√
ν0Z

S +
√

1− ρ2√ν0Zν ,X as t→ 0+ with E[X4]<∞ and Var[X]> 0. �

EC.3. Hedging Costs in Consistency and Inconsistency Cases

Recall that the delta hedging will adjust the underlying asset’s position to ∆(s0) in the consistency case

and ∆†(s0) in the inconsistency case, respectively. However, in the inconsistency case, to achieve the same

hedging effect, i.e., to make L†(S(t)) have the same variance as L(S(t)), one needs to additionally conduct

a series of hedging at time t1, . . . , tm with 0 < t1 < · · · < tm < t, which successively adjusts the position to

∆†1, . . . ,∆
†
m such that ∆†m = ∆(s0), for some m≥ 1. Now we consider the hedging cost, which is usually a

percentage d of the total trading volume. Suppose the previous position of the underlying asset is ∆̃, then

the hedging cost is

C =
∣∣∣∆(s0)− ∆̃

∣∣∣s0d, (EC.10)
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in the consistency case, and

C† =
∣∣∆†(s0)− ∆̃

∣∣s0d+

m∑
i=1

∣∣∆†i −∆†i−1
∣∣S(ti)d, (EC.11)

in the inconsistency case, respectively, where ∆†0 ,∆†(s0). The following Theorem EC.1 says that to achieve

the same hedging effect, the hedging cost in the consistency case is less than or equal to that in the incon-

sistency case.

Theorem EC.1. Suppose in the inconsistency case the risk manager needs to conduct a series of hedging

at time t1, . . . , tm with 0< t1 < · · ·< tm < t, which successively adjusts the position to ∆†1, . . . ,∆
†
m such that

∆†m = ∆(s0), for some m≥ 1, in order to achieve the same hedging effect in the consistency case. Moreover,

assume that E[S(ti)] = s0, for i= 1, . . . ,m. Then for the hedging cost C defined in (EC.10) and C† defined

in (EC.11), C ≤E[C†].

Proof: It is easy to see that

E[C†] =E
[∣∣∆†(s0)− ∆̃

∣∣s0d+

m∑
i=1

∣∣∆†i −∆†i−1
∣∣Stid]

=
∣∣∆†(s0)− ∆̃

∣∣s0d+

m∑
i=1

∣∣∆†i −∆†i−1
∣∣s0d

≥
∣∣∣∣∆†(s0)− ∆̃ +

m∑
i=1

(
∆†i −∆†i−1

)∣∣∣∣s0d
=
∣∣∆†(s0)− ∆̃−∆†0 + ∆†m

∣∣s0d
=
∣∣∣∆(s0)− ∆̃

∣∣∣s0d (recall ∆†0 = ∆†(s0) and ∆†m = ∆(s0))

=C,

which finishes the proof. �

Remark EC.1. (i) The assumption that E[S(ti)] = s0 in Theorem EC.1 makes sense for S(t) considered

in Theorem 1. Because E [S(t)]→ s0 as t→ 0+, so for small t and 0< t1 < · · ·< tm < t, E[S(ti)]≈ s0. (ii) The

result in Theorem EC.1 can be seen intuitively. In consistency case we can adjust the position to cancel the

first order effect of V (s) in one step, while in inconsistency case we need to adjust the position more than

once. And it is possible that the position is over adjusted in some step and needs to be adjusted back, which

causes extra hedging cost.

EC.4. Proof of Theorem 2

Proof: Let V̂
(1)
i (s) and V̂

(2)
i (s) denote the first- and second-order derivatives of V̂i(s), for i = 1,2. By

Taylor’s Theorem,

V̂i(S(t)) = V̂i(s0) + V̂
(1)
i (s0)(S(t)− s0) +

1

2
V̂

(2)
i (S̃(t))(S(t)− s0)2, for i= 1,2,

where S̃t is between s0 and S(t), which is also a random variable. Then, L1(S(t)) in (4) can be written as

L1(S(t)) =−1

2
V̂

(2)
1 (S̃t)(S(t)− s0)2,
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and L2(S(t)) in (5) can be written as

L2(S(t)) =
(

∆2(s0)− V̂ (1)
2 (s0)

)
(S(t)− s0)− 1

2
V̂

(2)
2 (S̃t)(S(t)− s0)2.

So, the variances of L1(S(t)) and L2(S(t)) are

Var[L1(S(t))] =
1

4
Var

[
V̂

(2)
1 (S̃(t))(S(t)− s0)2

]
,

and

Var[L2(S(t))] = b2Var [S(t)− s0] +
1

4
Var

[
V̂

(2)
2 (S̃t)(S(t)− s0)2

]
− bCov

[
S(t)− s0, V̂ (2)

2 (S̃t)(S(t)− s0)2
]
,

where b , ∆2(s0) − V̂
(1)
2 (s0). Their existence is due to (EC.2) shown in the proof of Theorem 1.

With the same arguments used to prove Theorem 1, we can have that, as t → 0+, Var[S(t) − s0] =

Θ(t), Cov[S(t) − s0, V̂
(2)
2 (S̃t)(S(t) − s0)2] = O(t3/2) and Var

[
V̂

(2)
i (S̃t)(S(t)− s0)2

]
= O(t2), for i = 1,2.

These results imply that Var[L1(S(t))] = O(t2) and Var[L2(S(t))] = O(t) as t→ 0+, which implies that

Var[L1(S(t))]/Var[L2(S(t))] → 0. Hence, there exists a τ > 0 such that when t < τ , Var[L1(S(t))] <

Var[L2(S(t))]. �

EC.5. Explicit Forms of Some Covariances

Recall that

Cov [M(x),M(y)] = τ2 exp

{
−

d∑
k=1

θk(xk− yk)2
}
,C(x,y).

By the definition of ∂M(x)/∂xk, we have

Cov

[
∂

∂xk
M(x),M(y)

]
= E

[
lim
t→0

M(x + tek)−M(x)

t
M(y)

]
−E

[
lim
t→0

M(x + tek)−M(x)

t

]
E [M(y)]

= lim
t→0

1

t

{
E [(M(x + tek)−M(x))M(y)]−E [M(x + tek)−M(x)]E [M(y)]

}
= lim

t→0

1

t

{
E [M(x + tek)M(y)]−E [M(x + tek)]E [M(y)]−

(
E [M(x)M(y)]−E [M(x)]E [M(y)]

)}
= lim

t→0

1

t

{
Cov [M(x + tek),M(y)]−Cov [M(x),M(y)]

}
=

∂

∂xk
Cov [M(x),M(y)]

= 2θk(yk−xk)C(x,y),

where the second equality holds since the Gaussian random field M(x) is differentiable and its covariance

function is twice differentiable (Stein 1999, §2.4). Similarly, we also have

Cov

[
∂

∂xk
M(x),

∂

∂yh
M(y)

]
=

∂2

∂xk∂yh
Cov [M(x),M(y)] =

{
−4θkθh(xk− yk)(xh− yh)C(x,y), k 6= h,

2θk[1− 2θk(xk− yk)2]C(x,y), k= h.

Recall that γ+(z) = (γ(z)>,γ0,1(z)>, . . . ,γ0,d(z)>)
>

, where γ(z) is a n× 1 vector with the i-th element

being Cov [M(z),M(xi)], γ0,k(z) is a n × 1 vector with the i-th element being Cov
[
M(z), ∂

∂xk
M(xi)

]
, for

k= 1,2, . . . , d. Also notice that

∂

∂zk
γ+(z) =

(
∂

∂zk
γ(z)>,

∂

∂zk
γ0,1(z)>, . . . ,

∂

∂zk
γ0,d(z)>

)>
.
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It is easy to see that ∂
∂zk

γ(z) is a n× 1 vector with the i-th element being

∂

∂zk
Cov [M(z),M(xi)] = Cov

[
∂

∂zk
M(z),M(xi)

]
,

and, for h= 1, . . . , d, ∂
∂zk

γ0,h(z) is a n× 1 vector with the i-th element being

∂

∂zk
Cov

[
M(z),

∂

∂xh
M(xi)

]
=

∂2

∂xh∂zk
Cov [M(z),M(xi)] = Cov

[
∂

∂zk
M(z),

∂

∂xh
M(xi)

]
.

EC.6. Proof of Theorem 3 with Normality Assumption

Proof: Additionally assume ε`(x) ∼ N (0, σ2(x)) and εk` (x) ∼ N (0, σ2
k(x)) for k = 1,2, . . . , d and ` =

1,2, . . .. Then under the SK formulation, (V (z), Ȳ>)> follows a multivariate normal distribution. It is not

difficult to see that

V (z)|Ȳ∼N
(

f(z)>β +γ(z)>(Γ + Σ)−1(Ȳ−Fβ),Var [M(z)]−γ(z)>(Γ + Σ)−1γ(z)

)
.

So, the SK predictor (9) is the conditional expectation, i.e., V̂ (z) =E
[
V (z)|Ȳ

]
. Then,

MSESK
V (z) =E

[(
V̂ (z)−V (z)

)2]
=E

[
E

[(
V̂ (z)−V (z)

)2 ∣∣∣Ȳ]]=E
[
Var

(
V (z)|Ȳ

)]
= Var(V (z))−Var

(
E
[
V (z)|Ȳ

])
= Var(V (z))−Var

(
V̂ (z)

)
. (EC.12)

Similarly, the GESK predictor (14) is also the conditional expectation, i.e., Ṽ (z) =E
[
V (z)|Ȳ+

]
, and

MSEGESK
V (z) =E

[(
Ṽ (z)−V (z)

)2]
= Var(V (z))−Var

(
Ṽ (z)

)
. (EC.13)

Partition Ȳ+ as Ȳ+ ,
(
Ȳ>, D̄>

)>
, then Ṽ (z) =E

[
V (z)|Ȳ, D̄

]
, and it is clear that V̂ (z) =E

[
Ṽ (z)|Ȳ

]
. So,

Var
(
V̂ (z)

)
= Var

(
E
[
Ṽ (z)|Ȳ

])
= Var

(
Ṽ (z)

)
−E

(
Var

[
Ṽ (z)|Ȳ

])
≤Var

(
Ṽ (z)

)
, (EC.14)

where the exact equality will hold if and only if D̄ is perfectly determined by Ȳ, which will not happen in

practice. Combing (EC.12)-(EC.14) finishes the proof of (19).

The proof of (20) can be established in the same way, hence we omit the details. �

EC.7. Proof of (20) in Theorem 3

Proof: By (12), (17) and (18), to show (20) is equivalent to show

γk+(z)>(Γ+ + Σ+)−1γk+(z)> γk,k(z)>(Γk,k + Σk,k)−1γk,k(z). (EC.15)

We define a new matrix Λ∗+ from Λ+ by swapping the block matrices Γ + Σ with Γk,k + Σk,k, that is,

Λ∗+ =

Γk,k +Σk,k Γk,1 +Σk,1 · · · Γk,k−1 +Σk,k−1 Γk,0 +Σk,0 Γk,k+1 +Σk,k+1 · · · Γk,d+Σk,d

Γ1,k +Σ1,k Γ1,1 +Σ1,1 · · · Γ1,k−1 +Σ1,k−1 Γ1,0 +Σ1,0 Γ1,k+1 +Σ1,k+1 · · · Γ1,d+Σ1,d

...
...

. . .
...

...
. . .

...
...

Γk−1,k +Σk−1,k Γk−1,1 +Σk−1,1 · · · Γk−1,k−1 +Σk−1,k−1 Γk−1,0 +Σk−1,0 Γk−1,k+1 +Σk−1,k+1 · · · Γk−1,d+Σk−1,d

Γ0,k +Σ0,k Γ0,1 +Σ0,1 · · · Γ0,k−1 +Σ0,k−1 Γ+Σ Γ0,k+1 +Σ0,k+1 · · · Γ0,d+Σ0,d

Γk+1,k +Σk+1,k Γk+1,1 +Σk+1,1 · · · Γk+1,k−1 +Σk+1,k−1 Γk+1,0 +Σk+1,0 Γk+1,k+1 +Σk+1,k+1 · · · Γk+1,d+Σk+1,d

...
...

. . .
...

...
. . .

...
...

Γd,k +Σd,k Γd,1 +Σd,1 · · · Γd,k−1 +Σd,k−1 Γd,0 +Σd,0 Γd,k+1 +Σd,k+1 · · · Γd,d+Σd,d


.
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We also define

γ∗+(z) =
(
γk,k(z)>,γk,1(z)>, . . . ,γk,k−1(z)>,γk,0(z)>,γk,k+1(z)>, . . . ,γk,d(z)>

)>
.

First, it is easy to see that the positive definiteness of Λ+ implies the positive definiteness of Λ∗+. Then, we

observe the following result

γk+(z)>Λ−1+ γk+(z) = γ∗+(z)>Λ∗+
−1γ∗+(z). (EC.16)

There are many ways to show (EC.16), here we do it in virtue of the elementary probability. First

notice that Λ+ is actually the covariance matrix of Ȳ+. So if we let ξ = (ξ>0 ,ξ
>
1 , . . . ,ξ

>
d )> be a n(d +

1)× 1 random vector with multivariate normal distribution N (0,Λ+), then its density function is fξ(x) =

1√
(2π)n(d+1) detΛ+

exp
{
− 1

2
x>Λ−1+ x

}
for x ∈<n(d+1). If we let ξ∗ = (ξ>k ,ξ

>
1 , . . . ,ξ

>
k−1,ξ

>
0 ,ξ

>
k+1, . . . ,ξ

>
d )>, then

due to the way Λ∗+ is constructed, ξ∗ follows the multivariate normal distribution N (0,Λ∗+), and its den-

sity function is fξ∗(x) = 1√
(2π)n(d+1) detΛ∗

+

exp
{
− 1

2
x>Λ∗+

−1x
}

. Since fξ(0) = fξ∗(0), we can have detΛ+ =

detΛ∗+. Moreover, due to the way γ∗+(z) is constructed, fξ(γ+(z)) = fξ∗(γ∗+(z)), which implies (EC.16).

With (EC.16), it suffices to prove

γ∗+(z)>Λ∗+
−1γ∗+(z)> γk,k(z)>(Γk,k + Σk,k)−1γk,k(z). (EC.17)

If we partition Λ∗+ as

Λ∗+ =

(
Λ∗ Λ∗B

Λ∗B
> Λ∗D

)
,

(
Γk,k + Σk,k Λ∗B

Λ∗B
> Λ∗D

)
,

and partition γ∗+(z) as γ∗+(z) =
(
γk,k(z)>,γ∗B(z)

>
)>

, then with the same arguments used in proving (21),

we can prove (EC.17). Thus (EC.15) is proved, so is (20). �

EC.8. PDE for Option Portfolio

Proposition EC.1. Suppose that a portfolio consists M derivatives, whose PDEs are given by (26).

Then, the price of this portfolio Φ(S(t), t) follows the PDE
LΦ(S(t), t) = 0,

Φ(S(T ), T ) =

M∑
m=1

Pm(S(T )).
(EC.18)

Proof: Recall the notations in Lemma 2, and define h(s, t) = 0, and let P (s) =
∑M

m=1Pm(s). Then,

E

[∫ T

t

e−
∫ τ
t
r(S(ι),ι)dιh(S(τ), τ)dτ + e−

∫ T
t
r(S(ι),ι)dιP (S(T ))

∣∣∣∣S(t) = s

]
= E

[
e−

∫ T
t
r(S(ι),ι)dιP (S(T ))

∣∣∣S(t) = s
]

=E

[
e−

∫ T
t
r(S(ι),ι)dι

M∑
m=1

Pm(S(T ))

∣∣∣∣∣S(t) = s

]

=

M∑
m=1

E
[
e−

∫ T
t
r(S(ι),ι)dιPm(S(T ))

∣∣∣S(t) = s
]

=

M∑
m=1

Vm(s, t) = Φ(s, t), (EC.19)

where the second to last equality is due to (26) and Lemma 2. Then due to (EC.19) and Lemma 2, (EC.18)

is proved. �
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For example, we consider a portfolio consists of two options V1(S1(t), t) and V1(S2(t), t), which are based

on underlying assets S1(t) and S2(t), respectively, and S1(t) and S2(t) are independent. Specifically, let

dS1(t)

S1(t)
= (r− q1)dt+σ1dB1(t) and

dS2(t)

S2(t)
= (r− q2)dt+σ2dB2(t),

and the corresponding PDEs are

LV1 =
∂V1

∂t
+ (r− q1)S1

∂V1

∂S1

+
1

2
σ2
1S

2
1

∂2V1

∂S2
1

− rV1 = 0,

LV2 =
∂V2

∂t
+ (r− q2)S2

∂V2

∂S2

+
1

2
σ2
2S

2
2

∂2V2

∂S2
2

− rV2 = 0.

Rewrite

dS1(t)

S1(t)
= (r− q1)dt+σ11dB1(t) +σ12dB2(t),

dS2(t)

S2(t)
= (r− q2)dt+σ21dB1(t) +σ22dB2(t),

where σ11 = σ1, σ22 = σ2, and σ12 = σ21 = 0. So, by Proposition EC.1, the portfolio price Φ = V1 +V2 follows

the PDE

LΦ =
∂Φ

∂t
+

2∑
i=1

(r− qi)Si
∂Φ

∂Si
+

1

2

2∑
i=1

2∑
j=1

SiSjγij
∂2Φ

∂Si∂Sj
− rΦ

=
∂Φ

∂t
+ (r− q1)S1

∂Φ

∂S1

+ (r− q2)S2

∂Φ

∂S2

+
1

2
S2
1σ

2
1

∂2Φ

∂S2
1

+
1

2
S2
2σ

2
2

∂2Φ

∂S2
2

− rΦ

=
∂V1

∂t
+ (r− q1)S1

∂V1

∂S1

+ (r− q2)S2

∂V2

∂S2

+
1

2
S2
1σ

2
1

∂2V1

∂S2
1

+
1

2
S2
2σ

2
2

∂2V2

∂S2
2

− r(V1 +V2)

=

(
∂V1

∂t
+ (r− q1)S1

∂V1

∂S1

+
1

2
σ2
1S

2
1

∂2V1

∂S2
1

− rV1

)
+

(
∂V2

∂t
+ (r− q2)S2

∂V2

∂S2

+
1

2
σ2
2S

2
2

∂2V2

∂S2
2

− rV2

)
=LV1 +LV2 = 0. �

EC.9. Boxplots of Bias and Standard Deviation

For the second part of numerical experiments in Section 6.1.1, the boxplots of the bias and standard deviation

for the price, delta, vega, rho and theta using GESK and separate SK are shown in Figures EC.1-EC.2.
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Figure EC.1 Boxplots of bias for price, delta, vega, rho, and theta surfaces.
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Figure EC.2 Boxplots of standard deviation for price, delta, vega, rho, and theta surfaces.

EC.10. Effects of Different LHS Approaches

For the second part of numerical experiments in Section 6.1.1, we investigate the effects when different LHS

approaches are used to choose the design points. In particular, we try the minimax LHS (denoted as “-mM”)

and maximin LHS (denoted as “-Mm”) in the R package “MOLHD” (see Morris and Mitchell 1995 and

Hou and Lu 2018 for more details), to compare with the built-in lhsdesign function in Matlab. Since our

numerical experiments are implemented in Matlab, we first generate the design points in R and then import

them into Matlab. In addition to the Matlab built-in function lhsdesgin(n,p) with default setting (denoted

as “-Matlab”), we also try lhsdesgin(n,p,‘Criterion’,‘correlation’) that minimizes the sum of between-column

squared correlations (denoted as “-Matlab-CR”). Figures EC.3-EC.7 show the comparison of different LHS

approaches, where no significant differences are observed.
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Figure EC.3 Boxplots of RMSE for price surface with different LH methods
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Figure EC.4 Boxplots of RMSE for delta surface with different LH methods
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Figure EC.5 Boxplots of RMSE for vega surface with different LH methods
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Figure EC.6 Boxplots of RMSE for rho surface with different LH methods
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Figure EC.7 Boxplots of RMSE for theta surface with different LH methods

EC.11. Parameters Calibration of VG Process

Based on the data from Yahoo Finance on 9th November 2018, we collect the corresponding European

options’ trading prices in Chicago Board Options Exchange with high liquidity to calibrate the parameters

(σ, ν, θ) of VG process for each considered stock. The considered trading prices for each option under specific

strike prices and maturities are listed in Tables i – v. Here we use the method proposed in Carr and Madan

(1999), which applies fast Fourier transform (FFT) based on the characteristic function to price options

driven by Lévy processes. Given the real European option prices, least squares criterion is used to calibrate

the parameters (σ, ν, θ).

Table i Apple, Inc. option chain, S0 = 204.47, yield 1.21%.

strike
maturity

20181116 20181130 20181221 20190118 20190215

180 24.53 24.90 27.25
185 21.50
190 14.90 17.31 19.00 20.75
195 10.07 13.45 15.49
197.5 7.90
200 5.92 7.70 10.00 12.20 15.10
202.5 4.10 6.15
205 2.71 4.80 7.15 9.36 12.25
207.5 1.62 3.50
210 0.90 2.56 4.84 7.00 9.84
212.5 0.48 1.87
215 0.25 1.28 3.05 5.02 7.90
220 0.08 0.60 1.87 3.59 6.10
225 0.05 0.26 1.10 2.43 4.70
230 0.03 0.15 0.63 1.65 3.60
235 0.02 0.38 1.13 2.74
240 0.01 0.26 0.77 2.02
245 0.03 0.17 0.52
250 0.01 0.12 0.40 1.14
255 0.27
260 0.22
265 0.18
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Table ii Facebook, Inc. option chain, S0 = 144.96, yield 0.

strike
maturity

20181123 20181214 20181221 20181228 20190118

130 18.20
135 14.35
140 6.50 8.50 9.07 9.50 10.70
143 4.35
144 3.80
145 3.21 5.45 5.94 7.74
146 2.71 4.90 5.81
147 2.25 4.35 5.35
148 1.81 3.90 4.85
149 1.46 4.26
150 1.19 3.60 4.01 5.25
155 0.33 1.54 1.99 2.25 3.42
160 0.10 1.00 1.19 2.11
165 0.50 1.26
170 0.26 0.74
175 0.02 0.18 0.16 0.45
180 0.10 0.27
185 0.17
190 0.04 0.12
195 0.02 0.08
200 0.01 0.07
205 0.04
210 0.03
215 0.02
220 0.01

Table iii Netflix, Inc. option chain, S0 = 113.47, yield 0.

strike
maturity

20181214 20181221 20190118 20190215 20190315

80 41.85
100 27.20 37.80
105 21.40 23.55 34.47
110 19.50 20.60 25.84 31.74 34.66
115 16.69 17.84 23.45 29.37 32.23
120 15.65 20.80 27.14 29.90
125 13.45 24.30 27.53
130 11.15 16.31 22.43 24.65
135 9.53 14.45 20.95
140 6.90 8.00 12.61 18.50 22.00
145 6.62 16.85 20.00
150 5.49 13.78 17.50
155 3.48 4.51
160 2.95 3.65 7.16 12.70 14.60
165 2.97 10.40 13.36
170 2.42 10.00 11.75
175 1.90 8.75 11.02
180 1.04 1.59 3.90 7.90 10.05
185 0.83 1.25 6.50
190 0.75 1.03 2.90 6.30 8.35
195 0.64 0.85 7.47
200 0.49 0.72 6.98
205 1.75
210 0.49 1.57 4.10 5.55
215 0.35 0.48
220 0.37 3.04 4.02
230 0.88 2.56 3.30
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Table iv Alibaba Group option chain, S0 = 144.85, yield 0.

strike
maturity

20181116 20181123 20181214 20181221 20190118

139 6.9
140 6.14 10.75 12.50
141 5.50 9.20
142 4.80
143 4.17 5.60 7.90
144 4.00
145 3.40 4.10 7.50 7.95 9.90
146 2.93 3.63
147 2.38 3.37
148 2.06 2.99
149 1.71 2.45
150 1.43 2.31 4.75 5.48 7.45
152.5 0.85 1.52
155 0.49 1.02 3.82 5.55
157.5 0.29 0.60
160 0.17 0.43 2.54 4.05
162.5 0.12 0.28 1.65
165 0.10 1.57 4.05
170 0.07 1.00 1.85
180 0.06 0.39 0.98
190 0.20 0.49
200 0.29
220 0.01 0.05

Table v Tesla, Inc. option chain, S0 = 120.51, yield 0.

strike
maturity

20170407 20170428 20170616 201710915 20180119

100 23.74 52.39
105 19.85 32.95 54.00
107.5 17.25 31.70
110 16.06 51.25
120 9.35 22.51 41.85
122.5 8.60 23.00
130 5.05 36.55 41.30
140 2.55 17.78 31.60 36.30
150 1.17 9.15 12.32 26.94 31.35
155 0.78 11.03
160 0.56 27.93
165 0.40 9.40
170 0.24 4.84 23.53
180 0.11 6.30 21.43
185 2.81 4.76
190 0.07 16.90
200 0.04 11.20 14.45
210 9.24 12.62
270 2.78 4.30

EC.12. IPA Estimators for Greeks

The stock price under exponential variance gamma (VG) process model is given by

SV G(t) = S(0) exp
(
(r−φ)t+XV G

t

)
,
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where XV G
t is a VG process with parameter (σ, ν, θ), and φ=−1/ν log(1− θν − σ2ν/2) is a compensation

such that E [SV G(t)] = S(0) exp(rt). At time 0, the European call option price is given by

V = exp(−rT )E
[(
SV G(T )−K

)+]
.

To estimate V via Monte Carlo simulation, we use time-changed Brownian motion method to simulate XV G
t ,

i.e., XV G
t = θGt + σWGt , where Gt is a gamma process with distribution Γ(t/ν, ν), and WGt is a Brownian

motion replacing t by Gt (see Schoutens 2003).

Notice that the payoff function in V is Lipschitz continuous, so we can apply IPA to estimate the Greeks.

The details are as follows.

1. ∂V/∂S(0) (Delta). The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂S(0)
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂S(0)

= e−rT1{SVG(T )≥K}
SV G(T )

S(0)
.

2. ∂V/∂T (Theta). The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂T
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂T

= −re−rT
(
SV G(T )−K

)+
+ e−rT1{SVG(T )≥K}S

V G(T )

(
(r−φ) +

∂XV G
T

∂T

)
,

where ∂XV G
T /∂T is given in Appendix B.1 in Cao (2011).

3. ∂V/∂r (Rho). The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂r
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂r

= −Te−rT
(
SV G(T )−K

)+
+ e−rT1{SVG(T )≥K}TS

V G(T ).

4. ∂V/∂θ. The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂θ
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂θ

= e−rT1{SVG(T )≥K}
∂ (S(0) exp ((r−φ)T + θGT +σWGT ))

∂θ

= e−rT1{SVG(T )≥K}S
V G(T )

(
− T

1− θν−σ2ν/2
+GT

)
.

5. ∂V/∂ν. The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂ν
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂ν

= e−rT1{SVG(T )≥K}S
V G(T )

(
−T
ν

(
θ+σ2/2

1− θν−σ2ν/2
−φ
)

+
∂XV G

T

∂ν

)
,

where ∂XV G
T /∂ν is given in Appendix B.2 in Cao (2011).
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6. ∂V/∂σ. The IPA estimator is given by

∂
(
e−rT (SV G(T )−K)

+
)

∂σ
=
∂
(
e−rT (S(0) exp ((r−φ)T +XV G

T )−K)
+
)

∂σ

= e−rT1{SVG(T )≥K}
∂ (S(0) exp ((r−φ)T + θGT +σWGT ))

∂σ

= e−rT1{SVG(T )≥K}S
V G(T )

(
− Tσ

1− θν−σ2ν/2
+WGt

)
.

EC.13. Parameter Setting in Section 6.3

Table vi Parameter settings

Parameters Values

Initial Values
Si,1(0) = 9+ i, i= 1,2, . . . ,40;
Si,2(0) = 19+ i, i= 1,2, . . . ,40.

Volatilities
σi,1 = 0.1, i= 1, . . . ,10; σi,1 = 0.15, i= 11, . . . ,20; σi,1 = 0.2, i= 21, . . . ,30; σi,1 = 0.15, i= 31, . . . ,40

σi,2 = 0.2, i= 1, . . . ,20; σi,2 = 0.25, i= 21, . . . ,30; σi,2 = 0.2, i= 31, . . . ,40.
Correlations ρi = 0.1, i= 1, . . . ,10; ρi = 0.5, i= 11, . . . ,20; ρi =−0.5, i= 21, . . . ,30; ρi = 0, i= 31, . . . ,40.

Strike Prices

Ki,1 = 9.3+0.7i, i= 1, . . . ,40;
Ki,2 = 7.4+0.6i, i= 1, . . . ,40;
Ki,3 = 11.2+0.8i, i= 1, . . . ,40;
Ki,4 = 16.8+1.2i, i= 1, . . . ,40;
Ki,5 = 15.9+1.1i, i= 1, . . . ,40;
Ki,6 = 18.7+1.3i, i= 1, . . . ,40;

Dividends qi = 0, i= 1,2, . . . ,40;
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