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Abstract. In derivative pricing and hedging, the consistency between the price and Greek 
surfaces (i.e., the Greek surfaces can be obtained by differentiating the price surface) is 
important in stabilizing the balance sheet and reducing the hedging cost. To build consis-
tent surfaces of the price and Greeks for real-time decisions, we propose to use the 
gradient-enhanced stochastic kriging method, based on the data collected through exten-
sive simulation experiments conducted when the market is closed. In addition to the natu-
rally guaranteed consistency, we prove that the constructed price and Greek surfaces are 
more accurate than those constructed separately using stochastic kriging. Besides the con-
sistency between the price and Greeks, we show that the partial differential equation rela-
tion between the price and Greeks, implied by the famous Feynman-Kac formula, can also 
be used to further improve the accuracy of the constructed surfaces. The numerical studies 
show that our proposed metamodeling methods work well for derivative pricing and 
hedging.
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1. Introduction
To trade financial derivatives, traders need to know the fair prices of the derivatives to determine the bid or ask 
prices, and at the same time, they also need to know the Greeks, that is, the sensitivities of prices with respect to 
market factors, to calculate and to hedge the risk of the portfolio. However, the fair prices and the Greeks change 
rapidly as the market factors change. Therefore, it is important to be able to calculate them in real time. As a result, 
closed-form formulae of the derivative prices are desired in practice, because they can be used to calculate the prices 
and the Greeks (by simply differentiating the prices formulae with respect to the market factors) in real time on 
observing the values of the market factors.

Unfortunately, closed-form formulae are in general difficult to derive for many derivatives due to their complex 
payment structures (e.g., exotic options) or the complex models of underlying dynamics (e.g., the stochastic volatil-
ity models). To accurately calculate the prices and Greeks in such cases, Monte Carlo simulation is often used. There 
are numerous studies on derivative pricing through Monte Carlo simulation, for example, Glasserman et al. (1999), 
Broadie and Kaya (2006), and Cai et al. (2017); see Glasserman (2003) for a comprehensive introduction. Compared 
with derivative pricing, estimating Greeks via Monte Carlo simulation is a more challenging problem, and several 
methods have been proposed to tackle this, including the likelihood ratio (LR) method (Glynn 1990), the infinitesi-
mal perturbation analysis (IPA) method (Glasserman 1991), the smoothed perturbation analysis method (Fu and 
Hu 1997), the kernel method (Liu and Hong 2011), and the mixed method (Peng et al. 2018).

However, Monte Carlo simulation is typically time-consuming. Although there is a large body of research on 
improving simulation efficiency, for example, variance reduction techniques (Kemma and Vorst 1990, Glasserman 
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et al. 1999) and using high-performance computing (Zenios 1999), Monte Carlo simulation is still difficult to use in 
a real-time environment, especially in dealing with derivative portfolios that may contain hundreds of derivatives 
with hundreds to thousands of underlying assets. Therefore, for real-time pricing and hedging, practitioners still 
resort to simple models (e.g., the Black-Scholes model) and their closed-form price formulae (e.g., the Black-Scholes 
formula; Black and Scholes 1973), despite that they may be inaccurate or unreliable.

Recently, Hong and Jiang (2019) propose the offline-simulation-online-application (OSOA) framework to 
bridge the gap between slow simulation and fast real-time decision making. The key is to use time-consuming 
offline simulation experiments to learn the metamodels (i.e., surfaces, often in closed-form formulae) that may be 
used in real-time decision making. This OSOA idea has successful applications in, for example, real-time risk 
monitoring (Jiang et al. 2020) and online ranking and selection (Shen et al. 2021, Liu et al. 2022). For the problem 
considered in this paper, this framework would suggest to build the price and Greek metamodels based on their 
estimates on some design points via offline Monte Carlo simulation and to use them for real-time price quoting 
and risk hedging.

However, there is a difference between our problem and a typical metamodeling problem (see Barton (2015) for a 
review). For a derivative or a derivative portfolio, we need both the price and Greeks, and there are relations 
between them, that is, the Greeks are the first- or second-order partial derivatives of the price with respect to differ-
ent market factors. When using Monte Carlo simulation to estimate the price and Greeks on chosen market scenar-
ios (i.e., design points), these relations can be maintained on these design points by using appropriate Greek 
estimators like the LR and IPA estimators. However, when using the price and Greek estimates of the design points 
to build metamodels, these relations may not be necessarily maintained, and it is not clear how the violations of 
these relations affect risk hedging. In this paper, we first investigate this issue. We say that the metamodels are con-
sistent if the price and Greek metamodels satisfy the differentiation relations. We show that consistency is important 
for our problem. More specifically, we prove that consistent metamodels may achieve better hedging quality and 
lower hedging costs. Therefore, ignoring consistency by building separate metamodels of price and Greeks is not a 
good idea. In this paper, our goal is to build a price metamodel that can be differentiated to produce the Greek 
metamodels. In this way, they are guaranteed to be consistent.

When building metamodels, we focus on the kriging-based methods (also known as Gaussian process methods), 
which do not require domain knowledge of the problem and provide flexible global fitting; see Cressie (1993) and 
Rasmussen and Williams (2006) for comprehensive surveys. In the simulation literature, Ankenman et al. (2010) 
propose the stochastic kriging (SK) approach to handle the random nature of simulation outputs, and Chen et al. 
(2013) propose the gradient-enhanced stochastic kriging (GESK), which incorporates gradient estimators into SK to 
improve the surface fitting accuracy. Qu and Fu (2014) also propose to incorporate the gradient information into 
the SK but with an extrapolation approach. In this paper, we show that the GESK can be used to achieve our goal, 
although it is not designed for this purpose. By building a price metamodel that incorporates both the price and the 
Greeks information, we prove that the price metamodel and the Greeks metamodels (obtained by differentiating 
the price metamodel) are more accurate than those built separately using SK in addition to the naturally guaranteed 
consistency.

For the price and Greeks of a derivative (or a derivative portfolio), consistency is not the only relation that 
they should satisfy. Theoretically, there is a dynamic equation, typically in the form of a partial differential 
equation (PDE), which establishes a quantitative relation between the price and the Greeks. For example, when 
the underlying asset follows a geometric Brownian motion, the derivative price follows the well-known Black- 
Scholes equation (Black and Scholes 1973). This equation specifies that the price and some Greeks (i.e., the 
delta, gamma, and theta) satisfy a specific relation. In the area of deep learning, the PDEs that describe physics 
laws (e.g., heat equation) have been effectively integrated into the neural networks to tackle supervised learn-
ing tasks, known as physics-informed neural networks (Raissi et al. 2019, Wang et al. 2021, Cuomo et al. 2022); 
see Karniadakis et al. (2021) for a survey. Inspired by this idea, we integrate the PDE into the GESK as a con-
straint and propose a PDE-constrained GESK approach to further improve the accuracy of the price and Greek 
metamodels.

The rest of this paper is organized as follows. Section 2 describes the setting of the metamodel-based prediction 
for the price and Greeks. In Section 3, we formally define consistency and demonstrate its importance in risk hedg-
ing. Then in Section 4, we propose to use the GESK to build the price and Greek metamodels, which naturally 
ensures consistency and achieves higher accuracy compared with the separate SK. In Section 5, we propose the 
PDE-constrained GESK to further improve the accuracy, where the PDE is specified by the Feynman-Kac formula. 
Numerical studies are presented in Section 6, followed by conclusions and discussions in Section 7. Some technical 
proofs and additional materials are included in the e-companion.
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2. Problem Setting
Let s ∈Rd�1, where d ≥ 2, denote a vector of d�1 market factors, which may include the prices and volatilities of 
the underlying assets, the interest rate, the exchange rates, and so on. The value of a derivative (or a derivative port-
folio) depends on the market factors. Furthermore, let t ∈ [0, T] be the time index, where T>0 is the maturity time of 
the derivative (or the longest maturity time of all derivatives in the portfolio). For the convenience of notation, we 
sometimes put the time index t and the market factors s together as x � (s⊤, t)⊤ and call it a market scenario. Let 
X ⊂ Rd denote the range of the market scenario. In practice, X is the anticipated variation range of the market factors 
in the next trading day based on their previous closing values. It can be determined by the market mechanism or 
practitioners’ own belief or prediction model. Let V(x) � V(s, t) denote the value of the derivative (or the derivative 
portfolio), and let Gk(x) � Gk(s, t) � ∂V(x)=∂xk denote the kth Greek (i.e., partial derivative) of the financial derivative 
(or the derivative portfolio), k � 1, 2, : : : , d.

In this paper, we suppose that V(x) and Gk(x), k � 1, 2, : : : , d, do not have closed-form formulae, and can only be 
estimated via simulation. Specifically, for a set of chosen market scenarios x1, x2, : : : , xn ∈ X , let Yℓ(xi) and 
Dk
ℓ(xi), k � 1, 2, : : : , d, be the ℓth simulation observation of the price and the kth Greek at the market scenario xi, 

respectively, where Dk
ℓ(x) � ∂Yℓ(x)=∂xk. Then, the estimated price and kth Greek at xi with mi replications are given 

by

Y(xi) �
1

mi

Xmi

ℓ�1
Yℓ(xi) and Dk

(xi) �
1

mi

Xmi

ℓ�1
Dk
ℓ(xi), k � 1, 2, : : : , d:

Our goal is to build the metamodels of V(x) and Gk(x), denoted as V̂(x) and Ĝk
(x), respectively, with the data

{(xi, Y(xi), Dk
(xi)) : k � 1, 2, : : : , d, i � 1, 2, : : : , n}, 

so that the metamodels may be used like closed-form formulae for real-time evaluations of the price and Greeks 
once the market scenario x is observed.

The price and Greek surfaces satisfy Gk(x) � ∂V(x)=∂xk for all k � 1, 2, : : : , d. However, these relations may not be 
necessarily satisfied by the metamodels V̂(x) and Ĝk

(x). We define that the price and Greek metamodels are consis-
tent if Ĝk

(x) � ∂V̂(x)=∂xk for all x ∈ X and k � 1, 2, : : : , d. Intuitively, the consistency is important to ensure the qual-
ity of risk hedging. However, little theory has been established in the literature. Therefore, before discussing how to 
build consistent V̂(x) and Ĝk

(x), we first provide a mathematical characterization of the importance of the consis-
tency in the next section.

3. Importance of the Consistency
To analyze the importance of the consistency, we take the widely used delta hedging strategy as an example and 
consider only a single underlying asset while noting that the same arguments apply to other hedging strategies and 
multiple underlying assets, as long as the hedging instruments exist and they are included in the portfolio. The 
delta hedging strategy approximates V(x), the value of the derivative portfolio at time t, by V(S(t)), where S(t) is the 
price of the underlying asset. By the first-order Taylor expansion,

V(S(t)) ≈ V(S(t0)) +V′(S(t0))[S(t)� S(t0)], (1) 

for any t ∈ [t0, t0 + τ] with small τ > 0, where V′(s)¢dV(s)=ds, and s denotes a generic price of the asset. Suppose 
the company shorts one derivative, then the delta hedging strategy enters V′(S(t0)) positions of the underlying asset 
to the portfolio at time t0. Then, the profit and loss (P&L) from the time t0 to t, denoted by L(S(t)), may be approxi-
mated by

L(S(t)) ��[V(S(t))�V(S(t0))] +V′(S(t0))[S(t)� S(t0)] ≈ 0, 

by Equation (1) for any t ∈ [t0, t0 + τ]. Therefore, the portfolio is (approximately) fully hedged against the price 
change of the underlying asset. Because V′(S(t0)) is known as delta (∆) at time t0, the strategy is known as the delta 

hedging strategy. It requires the portfolio to rebalance (i.e., change of the position of the underlying asset according 
to the delta) every τ�units of time. In practice, however, both V(S(t0)) and V′(S(t0)) may be estimated using the 
metamodels and are not necessarily consistent, which may affect the quality of hedging. In the rest of this section, 
we demonstrate the importance of the consistency in achieving high hedging quality.

3.1. Known V(s)
When V(s) is assumed to be known in the ideal situation, to perform the delta hedging, by definition one needs to 
calculate the Greek ∆(s)¢dV(s)=ds. Using such V(s) and ∆(s) for delta hedging, we are of course in a case where 
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consistency exists. Suppose one chooses to use V(s) and some wrong ∆†(s), then inconsistency happens. At time 0, 
the underlying asset price is observed as s0 > 0. Then the company will hold ∆(s0) shares of the underlying asset in 
the consistency case and ∆†(s0) shares in the inconsistency case, respectively. Suppose that ∆†(s0)≠ ∆(s0). At time 
t ∈ (0,τ1], the underlying asset price changes to a random value S(t), and the company will have P&L

L(S(t)) ��[V(S(t))�V(s0)] +∆(s0)[S(t)� s0], (2) 

in the consistency case, and

L†(S(t)) ��[V(S(t))�V(s0)] +∆†(s0)[S(t)� s0], (3) 

in the inconsistent case, respectively. Let →d denote the convergence in distribution. The following Theorem 1 says 
that the fluctuation of the company’s P&L will be smaller when consistency exists. The proof of Theorem 1 is in Sec-
tion EC.1 of the e-companion.

Theorem 1. Suppose that the underlying asset S(t) is driven by the exponential family of stochastic process S(t) �
s0 exp(at+

ffiffi
t
√

Xt), where Xt→
d X as t→ 0+ with E[X4] < ∞ and Var[X] > 0. Moreover, assume that there exist h>0 and 

th > 0 such that sup0< t≤ th
E[eθXt] < ∞ for all |θ | ≤ h, and the second-order derivative of V(s) is bounded above. Then for 

the P&L L(S(t)) defined in (2) and L†(S(t)) defined in (3), there exists τ > 0 such that Var[L(S(t))] < Var[L†(S(t))] for 
t < τ.

Remark 1. One critical assumption of Theorem 1 is S(t) � s0 exp(at+
ffiffi
t
√

Xt), where Xt→
d X with E[X4] < ∞ and 

Var[X] > 0. This assumption actually holds for a lot of asset models. For example, when S(t) is modeled as a geo-
metric Brownian motion, that is, S(t) � s0 exp(at+

ffiffi
t
√

Z), where Z is a standard normal random variable, of course 
it satisfies the assumption. When the Heston model is used, which is a commonly used stochastic volatility 
model, it can be shown that the assumption is also satisfied; see the details in Section EC.2 of the e-companion.

Remark 2. If one is willing to assume that V(s0) is approximately linear over a small range around s0 (i.e., perfect 
hedging), then the result of Theorem 1 can be obtained without assuming any form of S(t). Indeed, in this case, 
L(S(t)) ≈ 0, whereas L†(S(t))≠ 0 for small t.

Theorem 1 tells us that with the same hedging frequency, the existence of consistency leads to a better hedging 
effect, which makes the balance sheet more stable. Conversely, one could also consider achieving the same hedg-
ing effect and comparing the efforts required with and without consistency. Intuitively, the hedging cost in the 
consistency case will be less than that in the inconsistency case, because the position may be overadjusted and 
needs to be adjusted back in the latter case. We defer the rigorous analysis to Section EC.3 of the e-companion 
and formally state the previous result in Theorem EC.1 therein.

3.2. Estimated V(s)
When V(s) is unknown, it needs to be estimated (constructed) in a certain way, and we denote its estimator as V̂(s). 
In such a situation, although V̂(s) may deviate from V(s), it is used and treated as the “true price” in pricing and 
hedging anyway. Therefore, the P&L is calculated mainly for accounting purpose, that is, to produce the balance 
sheet. Another issue is that, when we want to compare the hedging quality in the consistency case and in the incon-
sistency case, the estimator V̂(s)may be different in the two cases.

Now suppose we use V̂1(s) and ∆1(s) with ∆1(s) � dV̂1(s)=ds for delta hedging in the consistency case, whereas 
we use V̂2(s) and ∆2(s) with ∆2(s) ≠ dV̂2(s)=ds in the inconsistency case. Then at time 0, the company will hold 
∆1(s0) shares of the underlying asset in the consistency case and ∆2(s0) shares of the underlying asset in the inconsis-
tency case, respectively. If without successive adjustment, at time t, the bookkeeping P&L recorded in the balance 
sheet is

L1(S(t)) ��[V̂1(S(t))� V̂1(s0)] +∆1(s0)[S(t)� s0], (4) 

in the consistency case, and

L2(S(t)) ��[V̂2(S(t))� V̂2(s0)] +∆2(s0)[S(t)� s0], (5) 

in the inconsistency case, respectively. Theorem 2 says that the fluctuation of company’s bookkeeping P&L will be 
smaller when consistency exists. The proof of Theorem 2 is in Section EC.4 of the e-companion.

Jiang, Hong, and Shen: Real-Time Derivative Pricing and Hedging 
INFORMS Journal on Computing, 2024, vol. 36, no. 5, pp. 1168–1189, © 2024 INFORMS 1171 



Theorem 2. With the same assumptions in Theorem 1 but replace the assumption for the second-order derivative of V(s) 
with that the second-order derivatives of V̂1(s) and V̂2(s) are bounded above, for the P&L L1(S(t)) defined in (4) and 
L2(S(t)) defined in (5), there exists τ > 0 such that Var[L1(S(t))] < Var[L2(S(t))] for t < τ.

Conversely, we can also consider the comparison of hedging cost to achieve the same hedging effect for the two 
cases. When we additionally assume that V̂1(s) ≡ V̂2(s), then the same result as in the case where V(s) is known can 
be obtained immediately. When V̂1(s)≠ V̂2(s), a similar result can be also expected, although the analysis may 
become mathematically intractable.

In this section, we discussed the importance of consistency in delta hedging, which makes the balance sheet more 
stable and leads to less hedging cost. In other words, without consistency, the delta hedging strategy may be inef-
fective, and the risk exposure of the portfolio may be high and sensitive to changes in market factors. The same 
arguments also apply to other hedging strategies. In the next section, we will provide a metamodeling method to 
construct surfaces of price and Greeks, which can ensure such consistency.

4. SK for Price and Greek Surfaces Construction
Recall that we require the constructed price and Greek surfaces V̂(x) and Ĝk

(x) to have closed-form expressions, so 
they can be used in real time. The SK method introduced by Ankenman et al. (2010) and van Beers and Kleijnen 
(2003) is a very suitable candidate, which does not require domain knowledge of the problem context and provides 
a global fitting of desired metamodels with closed-form expressions. In SK, the sample means of the price and 
Greeks at {x1, : : : , xn} are modeled as

Y(xi) � f(xi)
⊤b+M(xi) + ε(xi), (6) 

Dk
(xi) �

∂

∂xk
f(xi)

� �⊤

b+
∂

∂xk
M(xi) + ɛ

k(xi), k � 1, 2, : : : , d, (7) 

where f(x) ∈Rp is the prior information (vector of basis functions), b ∈Rp is a vector of unknown parameters, M(x)
is a Gaussian random field with zero mean, and

∂

∂xk
M(x)¢ lim

t→0

M(x+ tek)�M(x)
t

, 

where ek is the d × 1 unit vector with the kth element being one and the others being zeros. Moreover, 
ε(xi) �

Pmi
ℓ�1 εℓ(xi)=mi, where εℓ(x) � Yℓ(x)�V(x) is the simulation noise of price; and ɛk(xi) �

Pmi
ℓ�1 ɛ

k
ℓ(xi)=mi, where 

ɛk
ℓ(x) �Dk

ℓ(x)�Gk(x) is the simulation noise of the kth Greek. Assume that both εℓ(x) and ɛk
ℓ(xi) are independent of 

M(x), and ε1(x),ε2(x), : : : , are independent and identically distributed (i.i.d.) with zero mean and finite variance, 
and ɛk

1(x),ɛk
2(x), : : : , are i.i.d. with zero mean and finite variance. Correlation of the noises only exists among 

{εℓ(x),ɛ1
ℓ(x), : : : ,ɛd

ℓ(x)} and not between components with different x or ℓ.
As commonly assumed, M(x) has covariance function

Cov[M(x), M(y)] � τ2 exp �
Xd

k�1
θk(xk� yk)

2

( )

, (8) 

where xk and yk denote the kth coordinate of x and y, respectively, and θk ≥ 0 for k � 1, 2, : : : , d. Given that the covari-
ance function of M(x) has continuous second-order derivative (which is satisfied by (8)), it can be shown that 
∂M(x)=∂xk is also a Gaussian random field (Chen et al. 2013) with zero mean and covariance function 
Cov[∂M(x)=∂xk,∂M(y)=∂yk], whose specific form is given in Section EC.5 of the e-companion, together with the 
covariance functions Cov[∂M(x)=∂xk, M(y)] and Cov[∂M(x)=∂xk,∂M(y)=∂yh]. It is worth noting that all the previ-
ously mentioned covariance functions have common parameters τ2 and u¢ (θ1, : : : ,θd)

⊤.

4.1. Separate SK
A plain way of using SK is to build the price and Greek surfaces separately. Here we only summarize the results, 
and refer to Ankenman et al. (2010) for details. Let Y � (Y(x1), : : : , Y(xn))

⊤, and G and S be n×n matrices with the 
(i, j)-th element being Cov[M(xi), M(xj)] and Cov[ε(xi),ε(xj)], respectively. Let g(z) be a n × 1 vector with the ith ele-
ment being Cov[M(z), M(xi)]. Also, let F � (f(x1), : : : , f(xn))

⊤, which is a n×p matrix. Provided that b, (τ2, u), and S 
are known and (G+S) is invertible, at any new point z ∈ X , the SK mean squared error (MSE) optimal predictor of 

Jiang, Hong, and Shen: Real-Time Derivative Pricing and Hedging 
1172 INFORMS Journal on Computing, 2024, vol. 36, no. 5, pp. 1168–1189, © 2024 INFORMS 



V(z) is given by

V̂(z) � f(z)⊤b+g(z)⊤(G+S)�1
(Y � Fb), (9) 

with

MSESK
V (z)¢E[(V̂(z)�V(z))2] � Var[M(z)]�g(z)⊤(G+S)�1g(z): (10) 

For k � 1, 2, : : : , d, let Dk
� (Dk

(x1), : : : , Dk
(xn))

⊤, and Gk, k and Sk, k be n×n matrices with the (i, j)th element being 
Cov[∂M(xi)=∂xk,∂M(xj)=∂xk] and Cov[ɛk(xi),ɛk(xj)], respectively. Let gk, k(z) be a n × 1 vector with the ith element 
being Cov[∂M(z)=∂xk,∂M(xi)=∂xk]. Also, let Fk � (∂f(x1)=∂xk , : : : ,∂f(xn)=∂xk)

⊤, which is a n×p matrix. Provided that 
b, (τ2, u), and Sk, k are known and (Gk, k +Sk, k

) is invertible, at any new point z ∈ X , the SK MSE optimal predictor of 
Gk(z) is given by

Ĝk
(z) �

∂

∂zk
f(z)

� �⊤

b+gk, k(z)⊤(Gk, k +Sk, k
)
�1
(Dk
� Fkb), (11) 

with

MSESK
Gk (z)¢E[(Ĝk

(z)�Gk(z))2] � Var ∂

∂zk
M(z)

� �

�gk, k(z)⊤(Gk, k +Sk, k
)
�1gk, k(z): (12) 

In practice, b, (τ2, u), S and Sk, k are unknown. After estimating the diagonal matrices S and Sk, k with the sample 
variances, we can estimate b and (τ2, u) via the maximum likelihood estimation (MLE). Then the final empirical 
predictor of V(z) is V̂(z) in (9) with b, (τ2, u), and S replaced with their estimators, and the final empirical predictor 
of Gk(z) is Ĝk

(z) in (11) with b, (τ2, u), and Sk, k replaced with their estimators. When the prior information f(x) is 
unavailable, it is a convention to take f(x)⊤b � β�as a noninformative prior. When some stylized model for V̂(x)
exists (under stronger assumptions or with more simplification), it can also be included in f(x) (Shen et al. 2018).

The price and Greek surfaces constructed separately using SK do possess closed-form expressions. However, 
there is no guarantee of consistency. As we have discussed in Section 3, such constructed price and Greek surfaces 
may lead to an unsatisfactory hedging effect, which is also demonstrated in the numerical experiments in Section 6. 
A naive way to ensure consistency is that we keep V̂(z) in (9) only and obtain the Greeks by ∂V̂(z)=∂zk. However, it 
can be anticipated that the quality of the derived Greek surfaces is poor because no information on simulated 
Greeks is actually used and the derived Greeks entirely depend on the estimated price. With such Greek surfaces, 
the hedging effect may also be unsatisfactory, which is demonstrated as well in the numerical experiments in Sec-
tion 6.

4.2. Gradient-Enhanced SK
To ensure both the consistency and the quality of the constructed price and Greek surfaces, we propose to use the 
GESK introduced in Chen et al. (2013), which incorporates the response surface’s gradient estimators into SK to bet-
ter predict the response. More specifically, it simultaneously uses the models in (6) and (7) and uses the correlation 
between {Y(xi), D1

(xi), : : : , Dd
(xi)} to better predict Y(z). Let Y+ be the n(d+ 1) × 1 vector containing the averaged 

responses and all the averaged gradient estimators, that is, Y+ � (Y
⊤

, (D1
)
⊤ , : : : , (Dd

)
⊤
)
⊤. Let F+ be the n(d+ 1) × p 

matrix containing all the basis functions and their gradients, that is, F+ � (F⊤, (F1)⊤, : : : , (Fd)⊤)⊤. Let g+(z) be the 
n(d+ 1) × 1 vector containing the covariances between M(z) and all M(xi) and ∂M(xi)=∂xk, that is, g+(z) �
(g(z)⊤, g0, 1(z)⊤, : : : , g0, d(z)⊤)⊤, where g0, k(z) is a n × 1 vector with the ith element being Cov[M(z),∂M(xi)=∂xk], for 
k � 1, 2, : : : , d. Let G+ and S+ be n(d+ 1) × n(d+ 1) matrices including the covariances among all M(xi) and 
∂M(xi)=∂xk, and the covariances among all ε(xi) and ɛk(xi), respectively. More specifically,

G+ �

G G0, 1 ⋯ G0, d

G1, 0 G1, 1 ⋯ G1, d

⋮ ⋮ ⋱ ⋮
Gd, 0 Gd, 1 ⋯ Gd, d

0

B
B
B
@

1

C
C
C
A

and S+ �

S S0, 1 ⋯ S0, d

S1, 0 S1, 1 ⋯ S1, d

⋮ ⋮ ⋱ ⋮
Sd, 0 Sd, 1 ⋯ Sd, d

0

B
B
B
B
@

1

C
C
C
C
A

, (13) 

where G0, k � (Gk, 0)
⊤ is a n×n matrix with the (i, j)th element being Cov[M(xi),∂M(xj)=∂xk] and Gk, h � (Gh, k)

⊤ is a 
n×n matrix with the (i, j)th element being Cov[∂M(xi)=∂xk,∂M(xj)=∂xh], S0, k

� Sk, 0 is a n×n diagonal matrix with 
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the (i, i)th element being Cov[ε(xi),ɛk(xi)] and Sk, h
� Sh, k is a n×n diagonal matrix with the (i, i)th element being 

Cov[ɛk(xi),ɛh(xi)], for k, h � 1, 2, : : : , d. Provided that b, (τ2, u), and S+ are known and (G+ +S+) is invertible, at any 
new point z ∈ X , the GESK MSE optimal predictor of V(z) is given by

Ṽ(z) � f(z)⊤b+g+(z)
⊤
(G+ +S+)

�1
(Y+� F+b), (14) 

with

MSEGESK
V (z)¢E[(Ṽ(z)�V(z))2] � Var[M(z)]�g+(z)

⊤
(G+ +S+)

�1g+(z): (15) 

GESK does not need to incorporate all the partial derivatives on the d coordinates. When partial derivatives only on 
some coordinates are incorporated, it is straightforward to modify all the Y+, F+, g+(z), G+ and S+ accordingly. In 
practice, b, (τ2, u), and S+ are unknown. The S+ can be estimated with the sample variances of the response sam-
ples and gradient samples, and the sample covariances between them. For b and (τ2, u), one can simply use the esti-
mate in the SK model, or estimate them in the GESK model with more information. Then the final empirical 
predictor of V(z) is Ṽ(z) in (14) with b, (τ2, u), and S+ replaced with their estimators.

The Greek surfaces are constructed by taking partial derivatives on the constructed price surface Ṽ(z) with 
respect to each coordinate of z. Namely, for k � 1, 2, : : : , d, the Greek surface Gk(z) for z ∈ X is constructed using 
∂Ṽ(z)=∂zk, which is

∂

∂zk
Ṽ(z) � ∂

∂zk
f(z)

� �⊤

b+
∂

∂zk
g+(z)

� �⊤

(G+ +S+)
�1
(Y+� F+b), (16) 

where ∂g+(z)=∂zk is well defined with parameters (τ2, u); see the explicit forms in Section EC.5 of the e-companion. 
Because of the way that the Greek surfaces are constructed, the consistency between the constructed price and 
Greek surfaces is maintained naturally.

Before we ask what the MSE is when using ∂Ṽ(z)=∂zk as the estimator of Gk(z), we first point out a very impor-
tant observation. The GESK is actually a specific type of the so-called cokriging (Cressie 1993), which treats V(x) as 
the target variable and {Gk(x), k � 1, 2, : : : , d} as the covariables. However, with the spirit of cokriging, we can also 
treat Gk(x) as the target variable for any k and {V(x), Gh(x), h ≠ k} as the covariables. In this way, we can derive a 
cokriging predictor for Gk(z), which is denoted as G̃k

(z), for k � 1, 2, : : : , d. Following the same derivations in GESK 
or cokriging, it is not difficult to see that,

G̃k
(z) � ∂

∂zk
f(z)

� �⊤

b+gk
+(z)

⊤
(G+ +S+)

�1
(Y+� F+b), 

with

MSEGESK
Gk (z)¢E[(G̃k

(z)�Gk(z))2] � Var ∂

∂zk
M(z)

� �

�gk
+(z)

⊤
(G+ +S+)

�1gk
+(z), (17) 

where gk
+(z) � (gk, 0(z)⊤, gk, 1(z)⊤, : : : , gk, d(z)⊤)⊤, and gk, 0(z) is a n × 1 vector with the ith element being Cov[∂M(z)

=∂zk, M(xi)], and gk, h(z) is a n × 1 vector with the ith element being Cov[∂M(z)=∂zk,∂M(xi)=∂xh], for h � 1, 2, : : : , d.
From the explicit forms of ∂g+(z)=∂zk and gk

+(z) shown in Section EC.5 of the e-companion, it can be concluded 
that ∂g+(z)=∂zk � gk

+(z), and thus ∂Ṽ(z)=∂zk � G̃k
(z). Moreover,

MSEGESK-D
Gk (z)¢E

∂

∂zk
Ṽ(z)�Gk(z)

� �2
" #

�MSEGESK
Gk (z): (18) 

4.3. Accuracy Analysis
We just introduced how to build the price and Greek surfaces using GESK (i.e., (14) and (16)), which are obviously 
consistent. Next, we want to show that, even if we put the consistency aside, the price and Greek surfaces con-
structed using GESK are more accurate than those constructed using separate SK (i.e., (9) and (11)). Here we use the 
MSE at each predicted point z to quantify the accuracy, and a smaller MSE indicates higher accuracy. This is to say, 
we want to compare the MSE of V̂(z) (i.e., MSESK

V (z) given in (10)) with the MSE of Ṽ(z) (i.e., MSEGESK
V (z) given in 

(15)), and compare the MSE of Ĝk
(z) (i.e., MSESK

Gk (z) given in (12)) with the MSE of ∂Ṽ(z)=∂zk (i.e., MSEGESK-D
Gk (z)

given in (17) and (18)). It turns out that the constructed surfaces using GESK indeed have smaller prediction MSE, 
as formally stated in Theorem 3.
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Theorem 3. Suppose that b, (τ2, u), and S+ are known, then the price and Greek surfaces constructed using GESK have 
smaller MSE than those constructed using separate SK, that is, for any z ∈ X ,

MSEGESK
V (z) < MSESK

V (z), (19) 

and

MSEGESK-D
Gk (z) < MSESK

Gk (z), for k � 1, 2, : : : , d: (20) 

Before we show the proof, it is worth noting that if we additionally assume both εℓ(x) and ɛk
ℓ(x) are normally distrib-

uted, for ℓ � 1, 2, : : : , and k � 1, 2, : : : , d, then Theorem 3 can be proved with a much simpler approach. Because in 
such case, all the predictors (i.e., (9), (11), (14), and (16)) can be written as certain conditional expectations and their 
MSEs (i.e., (10), (12), (15), and (17)) can be written as certain conditional variances. Intuitively speaking, more infor-
mation results in greater variance reduction.1 The detailed analysis of this case is provided in Section EC.6 of the e- 
companion.

For the general case (where the simulation noises follow general distributions), the predictors are not necessarily 
the conditional means, hence the proof relies on the specific forms of the MSEs. Actually, a result same as (19) for a 
simplified problem was proved in (Chen et al. 2013, section EC.5). However, their proof relies on a sparsity assump-
tion, that is, they assume that the design points x1, : : : , xn are widely spread in the design space X such that the spa-
tial correlations of the observations (of both the response and the gradient) at distinct design points are 
approximately zero; that is, exp{�

Pd
k�1 θk(xik� xjk)

2
} ≈ 0 for i ≠ j, i, j � 1, 2: : : . Such sparsity assumption is quite 

restrictive, and it may not be satisfied in our problem.
The proof of Theorem 3 for general simulation noises and design points uses a result of Schur complement from 

Horn and Zhang (2005), which is stated in the following Lemma 1.

Lemma 1 (Theorem 1.12 of Horn and Zhang 2005). Let M be a symmetric matrix partitioned as

M �
A B
B⊤ D

� �

, 

where A is square and nonsingular. Then M is positive (semi) definite if and only if both A is positive definite and the Schur 
complement M=A¢D�B⊤A�1B is positive (semi) definite.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We first prove (19). By (10) and (15), to show (19) is equivalent to show

g+(z)
⊤
(G+ + S+)

�1g+(z) > g(z)⊤(G + S)�1g(z): (21) 

Recall the forms of G+ and S+ in (13), we can partition them as

G+ �
G GB

G⊤B GD

� �

, S+ �
S SB

S⊤B SD

� �

, 

where GB and SB are n×nd matrices, and GD and SD are nd×nd matrices. Moreover, let

L+¢
L LB

L⊤B LD

� �

¢
G+S GB +SB

G⊤B +S⊤B GD +SD

� �

� G+ +S+:

Provided that L and L+ are invertible as assumed in SK and GESK,

L�1
+ �

L�1 +L�1LB(LD�L⊤B L�1LB)
�1L⊤B L�1 �L�1LB(LD�L⊤B L�1LB)

�1

�(LD�L⊤B L�1LB)
�1L⊤B L�1 (LD�L⊤B L�1LB)

�1

 !

:

Also let g+(z) � (g(z)
⊤, g0, 1(z)⊤, : : : , g0, d(z)⊤)⊤¢ (g(z)⊤, gB(z)

⊤
)
⊤. Then,

g+(z)
⊤
(G+ +S+)

�1g+(z) � g+(z)
⊤L�1
+ g+(z)

� g(z)⊤L�1g(z) +q⊤Qq

� g(z)⊤(G+S)�1g(z) +q⊤Qq, 
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where q¢L⊤B L�1g(z)�gB(z) and Q¢ (LD�L⊤B L�1LB)
�1. By Lemma 1, Q�1 is the Schur complement of L in L+, 

and thus is positive definite because L+ is positive definite. Therefore, Q is positive definite, which implies that 
q⊤Qq is positive. Hence (21) is proved and so is (19).

The proof of (20) can be established similarly. Intuitively, one only needs to note that in this case Gk(x) is trea-
ted as the target variable instead of V(x), and it should make no difference in terms of the prediction if we rear-
range the vector of estimators Y+ � (Y

⊤
, (D1
)
⊤

, : : : , (Dd
)
⊤
)
⊤ by putting (Dk

)
⊤ in the first place and rearrange the 

covariance vector gk
+(z), covariance matrices G+ and S+, and basis vector F+ accordingly. Nevertheless, even if 

we do not do the rearrangement and keep the same Y+ as before (as we do in (16) and (17)), (20) can still be 
proved by some matrix transformation and calculation. We leave the details to Section EC.7 of the e- 
companion. w

To summarize, the price and Greek surfaces constructed using GESK not only possess consistency but also have 
higher accuracy than those constructed using separate SK. Therefore, the GESK is indeed a desired method for the 
problem considered in this paper. Moreover, in the next section, we will see that, in some specific cases, the GESK 
method can be further improved.

5. Further Improvement with PDEs
Besides the differentiation relations between the price and the Greeks at the same design point, there is often 
another relation between the price and the Greeks; that is, they often satisfy a dynamic equation, typically in the 
form of a PDE. In this section, we investigate how to integrate the PDE into the GESK as a constraint to further 
improve the accuracy of the constructed metamodels of the price and the Greeks.

5.1. Feynman-Kac Formula
In the field of PDEs, the well-known Feynman-Kac formula (Øksendal 2010, theorem 8.2.1) states that the expected 
value with respect to some diffusion process models can be obtained as a solution of an associated PDE. In our set-
ting, suppose the considered (d� 1)-dimensional market scenario S follows general diffusion process models; that 
is, it changes with time t as S(t)¢ (S1(t), S2(t), : : : , Sd�1(t))⊤, with

dSi(t) � µi(S(t), t)dt+
Xd�1

j�1
σij(S(t), t)dBj(t), i � 1, 2, : : : , d� 1, (22) 

where µi(s, t) and σij(s, t) are known drift and volatility functions defined on Rd�1 × [0, T], and Bj(t), j � 1, 2, 
: : : , d� 1, are independent standard Brownian motions. Let r(s, t) denote the interest rate function defined on 
Rd�1 × [0, T], and P(s) the payoff function at the maturity T defined on Rd�1. Then, the Feynman-Kac formula 
adapted to our setting is stated in Lemma 2.

Lemma 2 (Feynman-Kac Formula, Øksendal 2010). Suppose that the market scenario S(t) follows general diffusion process 
Models (22), and the derivative price can be expressed as

V(s, t) �E

Z T

t
e�
R τ

t r(S(ι), ι)dιh(S(τ),τ)dτ+ e�
R T

t r(S(ι), ι)dιP(S(T))

�
�
�
�
�
S(t) � s

" #

, (23) 

where h(s, t) is a known residual function. Then, V(s, t) satisfies the following PDE:

LV ¢
∂V
∂t +

Xd�1

i�1
µi(s, t)∂V

∂si
+

1
2
Xd�1

i�1

Xd�1

j�1
γij(s, t) ∂

2V
∂si∂sj

� r(s, t)V � h(s, t), (24) 

with terminal condition V(s, T) � P(s), where γij(s, t) �
Pd�1

k�1 σik(s, t)σjk(s, t).

Now we present some examples of the derivatives where (22) and (23) are satisfied and thus the Feynman-Kac 
formula can be applied.

Example 1 (European Call Option). Consider a European call option with an underlying asset whose price S(t) fol-
lows a geometric Brownian motion (which is a special case of the diffusion model), given by

dS(t) � rS(t)dt + σS(t)dB(t), (25) 

where r is the risk-free interest rate, that is, r(s, t) ≡ r, and σ�is the constant volatility. Here the underlying asset price 
is the only considered market factor, which clearly satisfies (22) with µ(s, t) � rs and σ(s, t) � σs. The payoff function 
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of the European call option is P(S(T)) � (S(T)�K)+, where K is the strike price and x+¢max(x, 0). Thus, the option 
price can be expressed as V(s, t) �E[e�r(T�t)P(S(T)) |S(t) � s], which satisfies (23). Then, by applying the Feynman- 
Kac formula, the PDE governing the option price is given by

∂V(s, t)
∂t + rs∂V(s, t)

∂s +
1
2σ

2s2 ∂
2V(s, t)
∂s2 � rV(s, t) � 0, 

with terminal condition V(s, T) � (s�K)+.

Example 2 (Asian Call Option). Consider an Asian call option, which is a path-dependent option. The underlying 
asset price follows the same model (25) in Example 1, and it is also the only market factor that affects the option 
price. However, to properly express the payoff function, a dummy market factor needs to be constructed. Denote 
the underlying asset price as S1(t). Define the dummy market factor S2(t)¢

R t
0S1(u)du. That is, dS2(t) � S1(t)dt. 

It can be seen that the two market factors satisfy (22) with µ1(s, t) � rs1, µ2(s, t) � s1, σ11(s, t) � σs1, and σ12(s, t) �
σ21(s, t) � σ22(s, t) � 0. The payoff function of the Asian call option is P(S(T)) � (S2(T)�K)+. Thus, the option price 
can be expressed as V(s, t) �E[e�r(T�t)P(S(T)) |S(t) � s], which satisfies (23). Then, by applying the Feynman-Kac 
formula, the PDE governing the option price is given by

∂V(s, t)
∂t + rs1

∂V(s, t)
∂s1

+ s1
∂V(s, t)
∂s2

+
1
2σ

2s2
1
∂

2V(s, t)
∂s2

1
� rV(s, t) � 0, 

with terminal condition V(s, T) � (s2�K)+.

Example 3 (Option Portfolio). Consider an option portfolio with M options. The underlying assets of the options 
included in the portfolio are aggregated and denoted as S(t). Let Φ(S(t), t) be the price of this portfolio at time t, 
and it can be expressed as Φ(S(t), t) �

PM
m�1 Vm(S(t), t), where Vm(S(t), t) denotes the price of the mth option 

included in the portfolio. The mth option may depend on a portion or all of the underlying assets in S(t). Suppose 
each option price Vm(S(t), t), m � 1, 2, : : : , M, follows a PDE

LVm(S(t), t) � 0,
Vm(S(T), T) � Pm(S(T)),

�

(26) 

where Pm(S(T)) is the payoff function of the mth option. Consequently, the portfolio price is governed by PDE

LΦ(S(t), t) � 0, 

with terminal condition Φ(S(T), T) �
PM

m�1 Pm(S(T)). The proof is provided in Section EC.8 of the e-companion, 
together with a specific expression of LΦ(S(t), t)when M�2.

For most derivatives, like those in Examples 1–3, h(s, t) ≡ 0 and r(s, t) ≡ r, where r is constant. In such a case, 
(23) can be simplified to

V(s, t) �E[e�r(T�t)P(S(T)) |S(t) � s], (27) 

and the PDE (24) is simplified to LV � 0.
These examples show the applicability of the Feynman-Kac formula to a broad category of derivatives, such as 

European-style financial options, Asian-style financial options, and their portfolios, thus many practical financial 
derivatives are governed by certain PDEs. As these PDEs also describe additional relations between the price 
and certain Greeks (e.g., the delta, the gamma, and the theta) in addition to consistency, it should be beneficial to 
use them in building metamodels for the price and Greeks.

5.2. PDE-Constrained GESK
Inspired by Theorem 3, we expect that incorporating the PDE relation may further improve the accuracy of the 
metamodels. However, the question is how to incorporate it. We propose to view this PDE as a constraint when 
building the metamodels of the price and Greeks using GESK, and we call it the PDE-constrained GESK, or the 
PDE-GESK for short.

In the simulation experiments, using appropriate estimation methods, it is possible to ensure that the PDE (24) is 
satisfied for (s⊤ , t)⊤ ∈ {x1, : : : , xn}. That is, the estimated price and Greeks on these design points can satisfy this 
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PDE. However, for the entire price surfaces (Ṽ(z) given in (14)) on X , it is not necessarily satisfied. Then, the ques-
tion is how to build the price surface via GESK, which can satisfy this PDE on X .

Recall that in the original GESK, Ṽ(z) � Ṽ(s, t) is finally computed based on the estimates of b and (τ2, u) via the 
MLE, which can be explicitly written as

Ṽ(s, t; b,τ2, u) � f(z)⊤b+g+(τ
2, u)(z)⊤(G+(τ2, u) +S+)

�1
(Y+ � F+b):

Ideally, we want to choose proper b, τ2, and u so that the PDE (24) is strictly satisfied. However, this is impossible 
because LṼ(s, t; b,τ2, u) � h(s, t) implies an infinite-dimensional equation, which means that we cannot solve the 
equations for all (s⊤, t)⊤ ∈ X . Therefore, we settle for second best. The parameter b is less important compared with 
the parameters (τ2, u), because the Gaussian random field M(x) has higher surface-fitting flexibility than the linear 
regression f(x)⊤b (that is why in practice it is common to set f(x)⊤b to zero, which is known as simple kriging, or 
set f(x)⊤b to an unknown constant, which is known as ordinary kriging). Moreover, the parameter τ2 is less impor-
tant than the parameter u because the effect of τ2 tends to be canceled out in (14), especially when the simulation 
noises are small so that S+ is close to a zero matrix. Therefore, for simplicity, we keep the estimates of b and τ2, 
which are obtained from the MLE together with the estimate of u, and then refine the estimate of u.

In the following analysis, without loss of generality, we consider the simple case where h(s, t) ≡ 0 and r(s, t) ≡ r as 
in the case of (27). To quantify the discrepancy of the PDE constraint, one may naturally consider the integrated 
mean squared error (IMSE) between LṼ(s, t; u) and LV(s, t):

IMSE(u) �
Z

S×[0, T]
(LṼ(s, t; u)�LV(s, t))2d(s, t) �

Z

S×[0, T]
(LṼ(s, t; u))2d(s, t), (28) 

and try to minimize the IMSE. However, the previous IMSE treats all the points (s⊤, t)⊤ in X equally, that is, it does 
not consider the distributions of underlying assets S(t) given that S(t) � s. Furthermore, such IMSE is not directly 
related to the accuracy of the price surface that we are concerned about. Therefore, we propose a more sophisticated 
IMSE, called the weighted IMSE (WIMSE):

WIMSE(u) �
Z

S×[0, T]
E

Z T

t
e�r(T�t)LṼ(S(τ),τ; u)dτ

�
�
�
�
�
S(t) � s

" # !2

d(s, t): (29) 

The integrand of WIMSE (29) can be viewed as the integrand of IMSE (28) incorporated with the sample path infor-
mation. Moreover, as revealed in the following Theorem 4, minimizing WIMSE (29) is equivalent to minimizing the 
IMSE between the price surfaces Ṽ(s, t; u) and V(s, t).

Theorem 4. Let u∗ � arg minu∈Θ WIMSE(u). Define

IMSE-V(u) �
Z

S×[0, T]
(Ṽ(s, t; u)�V(s, t))2d(s, t):

If the derivative price V(s, t) satisfies (27), then IMSE-V(u∗) ≤ IMSE-V(u) for all u ∈Θ.

Proof. By Lemma 2, Ṽ(s, t; u) can be expressed as a conditional expected value, that is,

Ṽ(s, t; u) �E

Z T

t
e�r(T�t)LṼ(S(τ),τ; u)dτ+ e�r(T�t)P(S(T))

�
�
�
�
�
S(t) � s

" #

:

Because V(s, t) satisfies (27), then,

Ṽ(s, t; u)�V(s, t) �E

Z T

t
e�r(T�t)LṼ(S(τ),τ; u)dτ

�
�
�
�
�
S(t) � s

" #

: (30) 

Therefore, one can see that for any u,

IMSE-V(u) �
Z

S×[0, T]
E

Z T

t
e�r(T�t)LṼ(S(τ),τ; u)dτ

�
�
�
�
�
S(t) � s

" # !2

d(s, t) �WIMSE(u):
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Therefore,

IMSE-V(u∗) �WIMSE(u∗) ≤ WIMSE(u) � IMSE-V(u), 

for all u ∈Θ. w

Remark 3. We should notice that Theorem 4 only considers the IMSE of the price surface. It is generally difficult 
to derive the IMSEs of the Greek surfaces because we cannot apply the Feynman-Kac formula to the Greeks. 
However, we want to argue that if the price surface of the derivative is more accurate and more in line with the 
PDE, its Greek surfaces should also tend to be more accurate. This can be observed in the numerical experiments 
reported in Section 6.3.

Algorithm 1 (Determining Correlation Parameter u)
Input: The sampling region S × [0, T], the outer sample size MO, the inner sample size MI, the number of the 
discretized points for time interval ℓ. 
1: Generate MO sample points on S × [0, T] via the Sobol sequence, which are denoted by {(si, ti), i � 1, 2, : : : , 

MO};
2: for i� 1 to MO do
3: Let ∆i � (T� ti)=ℓ;
4: for j� 1 to MI do
5: Generate sample path {Sj(ti + k∆i), k � 1, 2, : : : , ℓ} from the point Sj(ti) � si based on the underlying assets 

model;
6: Approximate the inner integral by

φi, j(u) �
Xℓ

k�0
e�r∆iℓLṼ(Sj(ti + k∆i), ti + k∆i, u)∆i;

7: end for
8: end for
9: Define the SAA objective function by

ι(u) �
1

MO

XMO

i�1

1
MI

XMI

j�1
φi, j(u)

0

@

1

A

2

;

10: Solve minuι(u) via a deterministic optimization method, and obtain the solution û∗;
Output: Return û∗.

Although LṼ(s, t; u) has a closed-form expression, deriving closed-form expression of WIMSE(u) given by (29) 
can be challenging. We propose to use the sample average approximation (SAA) approach to determine the optimal 
parameter u∗. The pseudocode is provided in Algorithm 1. First, we generate samples {(si, ti), i � 1, 2, : : : , MO} on 
S × [0, T] to approximate the outer integral of the objective function (29), where MO is the outer sample size. Second, 
we address the integrand of the outer integral, which refers to the conditional expectation in (29). Specifically, by 
setting (si, ti) as an initial point (i.e., the sample path of the underlying asset begins from S(ti) � si), we generate MI 
(named inner sample size) sample paths {Sj(ti + k∆i), j � 1, 2, : : : , MI, k � 1, 2, : : : , ℓ}, where ∆i � (T� ti)=ℓ�and ℓ�is the 
number of the discretized points for time interval [ti, T]. We proceed to approximate the inner integral by summing 
exp(�r∆iℓ)LṼ(Sj(ti + k∆i), ti + k∆i, u), k � 1, 2, : : : ,ℓ�along each sample path. Third, we approximate the conditional 
expectation within the integrand of the outer integral by using the sample means. This enables us to subsequently 
approximate the outer integral, thereby estimating the objective function (29). Certain dimensions of the space S 

might be theoretically unbounded. For example, the stock price changes within [0,∞). In practice, we could trun-
cate such dimensions by applying reasonable constraints. Furthermore, in Step 1, we use the Sobol sequence for 
generating outer sample points, which enhances the accuracy of the outer integral estimation.

6. Numerical Experiments
In this section, we conduct numerical experiments to investigate the quality of the price and Greek surfaces 
constructed using the GESK and PDE-constrained GESK and make a comparison with those constructed using the 
separate SK. For ease of presentation, we simply denote the results obtained using the separate SK, GESK, and 
PDE-constrained GESK as SK, GESK, and PDE-GESK, respectively, when there is no ambiguity. In all the following 
experiments, we set f(x)⊤b � β0 as an unknown constant; that is, we use ordinary kriging. According to Jones et al. 
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(1998) and Loeppky et al. (2009), we choose the number of design points as 10 times the number of varying market 
parameters (i.e., the dimensionality of x). Moreover, the design points are randomly generated in X using the Latin 
hypercube sampling (LHS) method. All the experiments are implemented in Matlab, and the Matlab built-in func-
tion “lhsdesign” is directly used for LHS. All the codes that produced the numerical results are available at a 
GitHub repository (Jiang et al. 2024).

6.1. Black-Scholes Model
We first consider a toy example, where the Black-Scholes model is applicable to evaluate and compare the perfor-
mance of the GESK method and separate SK method. More specifically, we focus on the accuracy of the constructed 
surfaces using different methods, and the hedging effect when the consistency is or is not maintained.

6.1.1. Accuracy of Constructed Surfaces. Suppose a company sells a European call option with an underlying 
stock whose price is driven by a geometric Brownian motion. The analytical formula of the option price is known as 
the Black-Scholes formula, and the Greek formulae can be obtained by taking partial derivatives directly. Such true 
price and Greeks are used to evaluate the accuracy of the constructed price and Greeks.

Firstly, we consider the marginal price and Greek surfaces, that is, only change one market parameter and keep 
others fixed. Specifically, suppose the baseline setting is as follows: The strike price is K� 105, the maturity time is 
T� 1 year, and the initial stock price is S(0) � 100, the volatility is σ � 0:2, and the interest rate is r�0.02. The option 
price and delta (i.e., partial derivative of price with respect to S) surfaces when S varies in the range [80, 120] are 
shown in Figure 1; the option price and vega (i.e., partial derivative of price with respect to σ) surfaces when σ�var-
ies in the range [0:01,0:3] are shown in Figure 2; the option price and rho (i.e., partial derivative of price with respect 
to r) surfaces when r varies in the range [0:001, 0:10] are shown in Figure 3; and the option price and theta (i.e., the 
negative partial derivative of price with respect to T) surfaces when T varies in the range [0:01,2] (equivalent to fix-
ing T and varying t) are shown in Figure 4. For each case, we randomly select 10 design points (i.e., scenarios) using 
LHS. We run Monte Carlo simulation to estimate the prices and corresponding Greeks (using IPA), which are 
denoted with cross in the figures. From Figures 1–4, it is clear that the constructed price and Greek surfaces using 
the GESK are more accurate than those from separate SK. Especially for the Greek surfaces, the constructed Greek 
surfaces using GESK are almost as good as the true ones, whereas those from separate SK are not satisfying. We 
also investigate the Greek surfaces obtained by directly taking derivatives on the price surface constructed by SK, 
which are denoted as SK-D. The Greek surfaces obtained in this way may outperform those constructed using sepa-
rate SK sometimes in some regions of market parameters, but overall the quality is very poor and unstable. These 
results clearly reveal the superiority of GESK in constructing accurate price and Greek surfaces.

Second, we consider the price and Greek surfaces when all market parameters can vary at the same time. We 
again use the LHS method to randomly sample 40 design points with x¢ (S,σ, r, T)⊤ ∈ [80, 120] × [0:01,0:3] ×
[0:001, 0:1] × [0:01,2], run simulations, and construct the price and Greek surfaces using GESK and separate SK, 
respectively. Because it is not convenient to visualize such high-dimensional surfaces, we randomly sample 1,000 
testing points in the domain using the Sobol sequence and calculate the root mean square error (RMSE), where the 
true values on the testing points are given by the analytical formulae. We replicate the entire procedure for 50 times 

Figure 1. (Color online) Price (Left) and delta (Right) Surfaces for S0 ∈ [80, 120]
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and report the boxplots of the RMSE for the price, delta, vega, rho, and theta in Figure 5. Similar to the results of 
marginal surfaces, the GESK method significantly outperforms the separate SK method in terms of the accuracy of 
constructed price and Greek surfaces.

We also try to decompose the MSE into bias and standard deviation, and their boxplots for the price, 
delta, vega, rho, and theta are collected in Section EC.9 of the e-companion. Numerical results show that compared 
with separate SK, GESK has smaller bias (in terms of amplitude) and smaller standard deviation, which are consis-
tent to the observed MSE reduction. How to theoretically analyze and compare the bias and standard deviation (or 
variance) separately is still an open question and worthy of further research. Moreover, to see the effect of different 
LHS approaches, we try the minimax LHS, maximin LHS (Morris and Mitchell 1995, Hou and Lu 2018), and the 
Matlab built-in function “lhsdesign” with correlation-reducing criterion, in addition to “lhsdesign” with default set-
ting, of which the details and results are included in Section EC.10 of the e-companion. Because no significant differ-
ences are observed, the Matlab built-in function “lhsdesign” with default setting is used throughout the following 
experiments. However, it is important to notice that good performance of “lhsdesign” with default setting in our 
examples does not necessarily guarantee good performance in other applications. As pointed by Ye (1998) and 
Cioppa and Lucas (2007), high correlations between each pair of components or bad spacing filling in LHS design 
may result in poor metamodel fitting. Therefore, in practice one should always be careful in selecting an appropri-
ate LHS approach.

6.1.2. Hedging Effect with or Without Consistency. We now illustrate the benefit of consistency from the hedging 
effect and hedging cost via numerical experiments. Consider the delta hedging strategy with maturity T�1 year. 
Specifically, the portfolio shorts 1,000 European call options and longs 1000 × delta units of stock to hedge the risk. 

Figure 2. (Color online) Price (Left) and vega (Right) Surfaces for σ ∈ [0:01, 0:3]

Figure 3. (Color online) Price (Left) and rho (Right) Surfaces for r ∈ [0:001, 0:1]

Jiang, Hong, and Shen: Real-Time Derivative Pricing and Hedging 
INFORMS Journal on Computing, 2024, vol. 36, no. 5, pp. 1168–1189, © 2024 INFORMS 1181 



We generate three-month stock price paths while fixing (σ, r) and adjust the stock position once a day during the 
21×3 trading days according to the delta under specific stock price. We record the P&L of this portfolio, for the 
situations where the price and delta are from the analytical Black-Scholes formula, and from the constructed sur-
faces using GESK or separate SK (based on the simulation on the design points of stock price according to the clos-
ing stock price on previous trading day), respectively.

Figure 6 shows that, for different situations, the P&L under one specific stock price path and the standard devia-
tion of P&L over 100 stock price paths. It can be seen that with consistency, the price and Greeks surfaces con-
structed using GESK produce a very nice hedging performance, which is almost the same as that produced by the 
Black-Scholes formula. The P&L is close to zero and remains stable over all stock price paths during the entire 
period, which will be extremely appreciated by companies in practice, because it ensures a stable balance sheet of 
the portfolio. As a comparison, the price and Greek surfaces constructed using separate SK produce heavily volatile 
P&L, whose standard deviation is high during the entire period and thus is unsatisfactory. It is worth mentioning 
that from Figure 1, we can see that the price and delta surfaces constructed by separate SK are actually not too bad 
in terms of the individual accuracy. However, because of the absence of consistency, the hedging effect can be 
much worse than expected.

Moreover, we consider the cumulative hedging costs when the GESK method or separate SK method is used 
with a transaction cost ratio d� 1o. Recall that in Theorem EC.1, the hedging costs are compared under the same 
hedging effect. Therefore, for the separate SK method, additional hedging is conducted accordingly to ensure that 
the resulting hedging effect is the same as that produced by the GESK method. The result is denoted as SK same 
effect. In addition, we also calculate the hedging cost when the separate SK method is used without additional 
hedging (which means the hedging effect is worse than the GESK method). The result is denoted as SK same 

Figure 5. (Color online) Boxplots of RMSE for Price, delta, vega, rho, and theta Surfaces 

Figure 4. (Color online) Price (Left) and theta (Right) Surfaces for T ∈ [0:01, 2]
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frequency. The boxplots of cumulative hedging costs for different situations over 100 stock price paths are shown 
in Figure 7. It can be seen that even under the same hedging frequency, with the price and Greek surfaces con-
structed by GESK that possess consistency, the incurred hedging cost is significantly smaller than that incurred 
with the surfaces constructed by separate SK. For separate SK, if additional hedging is conducted to ensure the 
same hedging effect as in GESK, the incurred hedging cost will be further increased, which forms a sharper contrast 
with the cost of GESK.

6.2. Variance-Gamma Process Model
We now consider a more realistic example that may be encountered in practice. Suppose a company holds a portfo-
lio with five Asian options and five lookback options, based on five different stocks: (1) Apple, Inc.; (2) Facebook, 
Inc.; (3) Netflix, Inc.; (4) Alibaba Group; and (5) Tesla, Inc. The value of this portfolio is given by

Φ �
X5

i�1
VA

i + VL
i , 

where VA
i and VL

i are the Asian option price and lookback option price based on stock i, respectively. The price of 
stock i, Si(t), is modeled by the exponential variance-gamma (VG) process:

Si(t) � Si(0) exp((r�φi)t+XVG
i (t)), 

where XVG
i (t) is a VG process with parameters (σi,νi,θi), and φi ��1=νi log(1�θiνi� σ2

i νi=2) is a compensation 
such that E[Si(t)] � Si(0) exp(rt), i � 1, 2, : : : , 5. We consider the partial-time arithmetic average Asian call option 

Figure 7. (Color online) Cumulative Hedging Costs Under the Same Hedging Effect and Same Hedging Frequency 

Figure 6. (Color online) P&L Under One Specific Stock Price Path (Left) and Standard Deviation over 100 Stock Price Paths 
(Right) 
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and the partial-time fixed strike lookback call option. For both the Asian option and lookback option, let the matu-
rity be T�1year, and the partial time be from 0.5 to 1 (i.e., the last six months), during which the stock price is 
observed once per week.

Based on data from Yahoo Finance November 9, 2018, we observe that, for each stock, the closing price S and 
yield are as listed in Table 1. Moreover, the parameters (σ,ν,θ) for each stock are calibrated by the corresponding 
European options’ trading prices in Chicago Board Options Exchange (see more details in Section EC.11 of the e- 
companion), and the calibrated values are also listed in Table 1. For each stock, let the strike prices of its correspond-
ing Asian option and lookback option be the same. Specifically, the strike prices of options based on the five stocks 
are (204, 140, 110, 150, 125). The risk-free interest rate is 2.73% (one-year U.S. treasury yield from the data).

We first consider the price and Greek surfaces of the portfolio at the initial time. For the options based on stock 
i � 1, : : : , 5, we consider their price surfaces at the initial time over (Si(0),σi,θi). Then, the price surface of the portfo-
lio at the initial time is the summation of all options’ price surfaces. We also consider the following Greek surfaces 
of the portfolio: ∂Φ=∂Si(0) (delta), ∂Φ=∂σi, ∂Φ=∂θi, for i � 1, : : : , 5. To compare the performance of surface construc-
tion by the GESK method and separate SK method, for each stock, we randomly sample 30 points in the ranges of 
630% of the current parameter values using LHS and run Monte Carlo simulations to estimate prices and corre-
sponding Greeks for the associated options. To estimate the option price, we use the time-changed Brownian 
motion method (Schoutens 2003) to generate a sample path of Si(t), and the Greeks can be estimated via the IPA 
(see more details in Section EC.12 of the e-companion). Given all the estimates on the design points, we then con-
struct the price and Greek surfaces for each option using GESK and separate SK, respectively, which finally gives 
the constructed price and Greek surfaces of the portfolio. To evaluate the accuracy, we sample 100 testing points for 
each stock in the aforementioned parameter ranges using a Sobol sequence, on which the “true” values of prices 
and Greeks of the Asian option and lookback option are obtained via extensive simulation (106 paths) because the 
analytical formulae are unavailable. Then, for the price and Greek surfaces of the portfolio constructed using GESK 
and separate SK, respectively, we calculate the RMSE over all testing points. After replicating the entire procedure 
for 50 times, the boxplots of the RMSE for Greeks are shown in Figure 8. All the results show that the GESK method 
significantly outperforms the separate SK method in terms of the accuracy of the Greek surfaces construction.

We also examined performance for delta hedging. Suppose the company holds one unit of the previous portfolio 
and shorts delta units of each stock to hedge the risk. Like in Section 6.1.2, we generate three-month stock price 
paths for all five stocks under the current (σ,ν,θ) and adjust the position of stock i once a day during the 21×3 trad-
ing days according to ∂Φ=∂Si(t), i � 1, : : : , 5. We record the P&L for the situation where the price and delta surfaces 
are constructed using the GESK method and separate SK method, respectively, based on the simulation on the 
design points, which are combinations of the five stock prices that randomly sampled in the ranges of 5% of the 
closing prices on the previous trading day using LHS. Figure 9 shows that, for different situations, the P&L under 
one specific stock price path and the standard deviation of P&L over 50 stock price paths. It can be seen that with 
consistency, the GESK method produces a very nice hedging performance. The P&L is close to zero and remains 
stable over all stock price paths during the entire period. As a comparison, the separate SK method produces 
heavily volatile P&L, whose standard deviation is high over all stock price paths during the entire period, and thus 
is unsatisfactory.

6.3. Portfolio of Options
In this section, we compare the performances of GESK and PDE-GESK. Specifically, we examine two types of port-
folio of options.

6.3.1. Portfolio of European Options. We first examine a portfolio with 40 European options, where the underlying 
asset of each European option is driven by geometric Brownian motion. Therefore, we know the analytical formula 

Table 1. Underlying Stocks’ Closing Prices, Dividends, and Calibrated 
Parameters

Apple, Inc. Facebook, Inc. Netflix, Inc. Alibaba Tesla, Inc.

S(0) 204.47 144.96 113.47 144.85 120.51
Yield 1.21% 0 0 0 0
σ 0.2636 0.2625 0.4012 0.2842 0.4660
ν 0.0387 0.0355 0.0394 0.0017 0.0933
θ �0.5185 �0.8288 �1.2344 �2.6984 �1.1459
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of the price and Greeks of this portfolio. Let the risk-free interest rate be r� 0.02 and let the maturity and volatility 
of all the options be T� 1 and σ � 0:2, respectively. For i � 1, 2: : : , 40, the initial price of the underlying asset and the 
strike price for the ith option are Si(0) � 100+ i and Ki � 79+ 2i, respectively. To implement PDE-GESK, we set 
MO�1,000, MI�100, and ℓ � 10 in Algorithm 1.

For each i � 1, 2, : : : , 40, we randomly sample 20 design points on the space [0:8Si, 1:2Si] × [0, T] using LHS and 
use the price and the delta on these design points to conduct GESK. We also sample 500 testing points on the same 

Figure 8. (Color online) Boxplots of RMSE for ∂Φ=∂S0i (delta), ∂Φ=∂σi, ∂Φ=∂θi, i � 1, : : : , 5 
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space using a Sobol sequence for each option to calculate the RMSE for price and each element of delta vector. For 
ease of presentation, we compute the average of the RMSEs of all elements in delta. After replicating the entire pro-
cedure for 20 times, boxplots of the RMSEs are reported in Figure 10, which indicates that the PDE-GESK is better 
than the GESK in constructing the price and the delta surfaces.

Furthermore, we consider another two settings of strike prices, that is, Ki � 90+ i (denoted as Case 2) and Ki �

110+ i (denoted as Case 3), to compare with the original setting (denoted as Case 1). The RMSE of price and aver-
aged delta are summarized in Table 2, which also indicates the superiority of PDE-GESK in constructing the price 
and delta surfaces.

6.3.2. Portfolio of Basket Options. We examine a portfolio consisting of 240 basket options, each of which consists 
of two underlying assets driven by geometric Brownian motions. For i � 1, 2, : : : , 40, let Vi ¢Vi(Si, 1(t), Si, 2(t), t) be 
the price of the ith European call basket option, where Si, 1(t) and Si, 2(t) are the underlying assets with volatilities 
σi, 1 and σi, 2, respectively, and with correlation ρi. For i � 1, 2, : : : , 40, the portfolio involves the following positions: 
(i) shorting two European call basket options Vi with strike price Ki, 1; (ii) longing one European call basket option 
Vi with strike price Ki, 2; (iii) longing one European call option Vi with strike price Ki, 3; (iv) shorting two European 
call options Vi with strike price Ki, 4; (v) longing one European call option Vi with strike price Ki, 5; and (vi) longing 
one European call option Vi with strike price Ki, 6. The values of these parameters are specified in Table vi in Section 

Figure 9. (Color online) P&L Under One Specific Stock Price Path (Left) and Standard Deviation over 50 Stock Price Paths 
(Right) 

Figure 10. (Color online) Boxplots of RMSE for Price and Averaged RMSE for delta with GESK and PDE-GESK in Portfolio of 
European Options 
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EC.13 of the e-companion. The risk-free interest rate is r�0.02, and the maturity of all the options is T�1year. To 
implement PDE-GESK, we set MO�1,000, MI�100, and ℓ � 10. For both GESK and PDE-GESK, we only use the 
price and delta for surface construction. That is, on each design point, we only have the estimated price and delta, 
based on which the price and Greek surfaces are constructed.

For each i � 1, 2, : : : , 40, randomly sample 30 design points on the space [0:5Si, 1, 1:5Si, 1] × [0:5Si, 2, 1:5Si, 2] × [0, T]
using LHS. Randomly sample 500 testing points on the same space using a Sobol sequence for each option to calculate 
the RMSE for price, theta, and each element of delta vector and gamma matrix, where the true values are given by the 
analytical formulae. For ease of presentation, we compute the average of the RMSEs of all elements in delta and 
gamma, respectively. After replicating the entire procedure for 20 times, boxplots of the RMSEs can be obtained. We 
also consider another setting, where the only difference is that the number of design pints is 50 instead of 30. The 
results of GESK and PDE-GESK methods are given in Figures 11 and 12 and Table 3. We have the following two 
observations. (i) The PDE-GESK is better than the GESK in terms of the accuracy on the price and Greek surfaces. (ii) 
Although the gamma and theta information are not available (i.e., not estimated on the design points) during the sur-
face construction, imposing the PDE constraint can still make the constructed surfaces of such Greeks more accurate.

7. Conclusion
In this paper, we introduce a kriging-based metamodeling method to build consistent surfaces of the price and 
Greeks for financial derivatives. We not only theoretically prove the importance of consistency in ensuring the 
hedging effect and maintaining a stable balance sheet but also prove that the proposed method can deliver more 
accurate price and Greeks prediction than some other plain methods. Furthermore, we propose to use the PDE 
information as a constraint to further improve the accuracy of the constructed price and Greek surfaces. These theo-
retical results are all well demonstrated using numerical examples.

Figure 11. (Color online) Boxplots of RMSE for Price, Averaged RMSEs for delta, gamma, and theta with GESK and PDE-GESK 
Under 30 Design Points in Portfolio of Basket Options 

Table 2. Mean and Standard Deviation of RMSE for Price and Averaged RMSE for delta with GESK and PDE-GESK in 
Portfolio of European Options

Case 1 Case 2 Case 3

RMSE Price delta Price delta Price delta

GESK
Mean 8.8103 0.3427 13.7781 0.5657 7.2097 0.2565
Standard deviation 2.7489 0.1377 4.6751 0.2311 2.0254 0.0849

PDE-GESK
Mean 6.8386 0.2145 9.3995 0.2690 6.4630 0.2078
Standard deviation 1.5407 0.0556 2.7119 0.0937 1.9066 0.0357

Jiang, Hong, and Shen: Real-Time Derivative Pricing and Hedging 
INFORMS Journal on Computing, 2024, vol. 36, no. 5, pp. 1168–1189, © 2024 INFORMS 1187 



There are several interesting directions for future research. One potential direction is to develop a sequential 
approach for selecting design points, which could enhance the accuracy and efficiency of surfaces. Another possible 
direction is to extend the PDE constrained framework to the integro-differential equation constrained framework 
to tackle the problem with the Lévy process underlying asset models. In addition, it may be worthwhile to consider 
other metamodeling techniques, such as tree-based methods or neural networks, to construct the price and Greek 
surfaces. These alternative techniques may offer higher accuracy or other desirable properties beyond consistency.

Endnote
1 We acknowledge an anonymous reviewer for pointing out this fact.
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